I have a parity check matrix for a binary linear code V below:
$$ H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} $$
I want to find a generator matrix for V. Is anything different than just converting the parity matrix to the generator since I'm trying to find one for 'V'? As in, put $H$ in standard form to get $[I\mid A]$, then $G = [-A^T \mid I]$?
Steps I did: R3 = R1 + R3 $$ H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} $$ R1 = R1 + R3 $$ H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} $$
R2 = R2 + R1 $$ H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} $$
So the parity matrix is now in the form [I3 | A ] where A = $$ A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} $$ $$G = [-A^T \mid I] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} $$
Is this correct?
Edit: $$G = [-A^T \mid I] = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} $$
I think the last edit is correct. But for the row operation part I would do
R1 = R1 + R3, R2 = R2 + R3
and then swap R1 and R3 to get an [I3|A]