I'm trying to prove that $S$, the subring of $M_2(\mathbb{R})$ generated by $\left(\begin{array}{cc} r & 0 \\ 0 & r \end{array} \right), r \in \mathbb{R} $ and $\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$ is isomorphic to $\mathbb{C}$.
I thought of creating the map $f:\mathbb{C} \to S$ by $f(a+bi) = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)^b.$ But this doesn't seem like a very natural map, does anyone have any suggestions?
Why not use $f(a + bi) = \begin{pmatrix}a&0\\0&a\end{pmatrix} + \begin{pmatrix}b&0\\0&b\end{pmatrix}\begin{pmatrix}0&1\\-1&0\end{pmatrix} = \begin{pmatrix}a&b\\-b&a\end{pmatrix}$?