Find the minimum value of $\sqrt{x^2+y^2}$, given $15x+8y=120$.
My attempt:
From $15x+8y=120$, I get $y=\frac{120-15x}{8}$. I substitute this value into $\sqrt{x^2+y^2}$, getting $\sqrt{\frac{289x^2-3600x+14400}{64}}$. I am stuck here as $289x^2-3600x+14400$ cannot be square-rooted.
This problem can be stated in a geometric way: find the distance from the point $(0,0)$ to the line $\{(x,y) \colon 15x + 8y = 120\}$. Let's find out where this line intersects with axis: $y=-{15 \over 8} x + {120 \over 15} = {-15 \over 8} x + 8$, so if $x=0$ then $y = 8$. On the other hand $x = {-8 \over 15} y + {120 \over 8} = {-8 \over 15} y + 15$, hence if $y=0$ then $x=15$. Therefore we need to find the altitude of the triangle with sides $15$ and $8$. Clearly it is ${1 \over 2}{2\,\cdot\,\text{area of the triangle} \over \sqrt{15^2+8^2}} = {15 \cdot 8 \over \sqrt{225+64}} = {120 \over \sqrt{289}} = {120 \over 17}$.