Let $F_n$ be the free group on $n$ generators $u_1,...,u_n$ and $M_n$ the free monoid on $n$ generators $v_1,...,v_n$. Would $u_i \to v_i$ and $u_i^{-1} \mapsto v_i$ extend to a well-defined map that is something like a homomorphism?
2026-02-22 19:50:47.1771789847
Finitely Generated Free Group to Finitely Generated Free Monoid
47 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GROUP-HOMOMORPHISM
- homomorphism between unitary groups
- Order of a group = Order of kernel × Order of homomorphic image?
- Construct a non trivial homomorphism $\mathbb Z_{14} \to\mathbb Z_{21}$
- Continuous group homomorphism between normed vector spaces are linear?
- Show $\widehat{\mathbb{Z}}$ is isomorphic to $S^1$
- Coset and Fiber
- Finding a homormorphism form $\mathbb{Z}/4\mathbb{Z}$ to $\mathbb{Z}/6\mathbb{Z}$
- Show that the element $φ(a)\in G'$ has also order d!
- Explicit description of the group of homomorphisms from $\mathbb{Z}_p^{\times}$ to $\mathbb{Z}/n$
- Smallest $n\in \mathbb{Z}_{>0}$ for existence of a monomorphism $G \rightarrow S_n$
Related Questions in FREE-GROUPS
- How to construct a group whose "size" grows between polynomially and exponentially.
- Help resolving this contradiction in descriptions of the fundamental groups of the figure eight and n-torus
- What is tricky about proving the Nielsen–Schreier theorem?
- Abelian Groups and Homomorphic Images of Free Abelian Groups
- Proof check, existence of free product
- determine if a subgroup of a free group is normal
- Bass-Serre tree of Isom($\mathbb{Z}$)
- Crossed homomorphism/derivation on free group
- Existence of elementd of infinite order in finitely generated infinite group
- Free abelian group. Transformation
Related Questions in MONOID
- What concept does a natural transformation between two functors between two monoids viewed as categories correspond to?
- Monoid but not a group
- In a finite monoid (M, $\circ$) if the identity element $e$ is the only idempotent element, prove that each element of the monoid is invertible.
- Maps between free commutative monoid monad and the free monoid monad
- Do Monoid Homomorphisms preserve the identity?
- free commutative monoid monad
- Let $M$ be a monoid and let $M^*$ be the group of invertible elements of $M$. Prove the following...
- Monoid ring over a field is a finitely generated $k$-algebra
- a generalization of group (monoid with order-by-order invertible elements)
- Semigroup homomorphism which isn't a monoid homomorphism
Related Questions in MORPHISM
- Describe the corresponding $k$-algebra homomorphism $\tilde{\varphi}:k[V]\to k[\mathbb{A}^1]$.
- Restriction of a morphism is a morphism
- Is a bijective morphism between affine varieties an isomorphism?
- Are continuous maps "weaker" than other morphisms?
- Formula of morphism $\pi $ to general element $K[x]/(m)$
- Morphism, functional equations and bijection
- Monomorphisms, unclear basic property, Functor
- Functors between morphism categories
- Isomorphism between two exact sequences
- Definition morphism of Hopf algebra
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
This doesn't work, and more generally if $G$ is any group and $M$ is a free monoid, the only (monoid) homomorphism from $G$ to $M$ is the map that sends every element of $G$ to $1$. Indeed, suppose $f:G\to M$ is a homomorphism and let $g\in G$. Then $f(g)f(g^{-1})=f(1)=1$. But the only way two elements of $M$ can have product $1$ is if both elements are $1$ (for instance, because every element of $M$ can uniquely be written as a word in the free generators and the only way to concatenate two words to get an empty word is if the two words are also empty). Thus $f(g)=1$.