For what value(s) of $a$ does the inequality $\displaystyle \prod_{i=0}^{a}(n-i) \geq a^{a+1}$ hold? ($n,a \in \mathbb{N}, n > a$)
Supposedly for $a=\dfrac{n}{2}$:
$n \cdot (n-1) \cdot (n-2) \dots (n-\frac{n}{2}) \geq \left( \dfrac{n}{2}\right)^{\frac{n}{2}+1}$
But I've not thought of a way to show this.
For $a-\frac{n}{2}$ you have $$n \geq \frac{n}{2} \\ n-1 \geq \frac{n}{2}\\ ....\\ n-\frac{n}{2} \geq \frac{n}{2}$$
Multiply them.
In general, the relation can only hold if there is a relation between $n$ and $a$.