Today teacher tell us that every natural number is the sum of four positive squares.
and let us this work:
write $747004$ as the sum of $4$ squares.
I'm at high school and don't understand the proof in Wikipedia.
Today teacher tell us that every natural number is the sum of four positive squares.
and let us this work:
write $747004$ as the sum of $4$ squares.
I'm at high school and don't understand the proof in Wikipedia.
there are 12537 integer quadruples $w \geq x \geq y \geq z \geq 0$ with $w^2 + x^2 + y^2 + z^2 = 747004.$ Since $747004 = 4 \cdot 186751,$ and $186751 \equiv 7 \pmod 8.$ As a result, $747004$ is not the sum of three squares, so there are no quadruples with any zeroes. Here are some form the beginning, middle, and end:
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
863 47 5 1
863 43 19 5
863 41 23 5
863 37 29 5
863 35 31 7
863 35 29 13
862 62 10 4
862 60 18 6
862 58 20 14
862 54 30 12
862 52 34 10
862 50 38 4
862 50 28 26
862 46 38 20
862 42 36 30
861 75 7 3
861 69 29 9
861 65 27 27
861 63 33 25
861 61 39 21
861 57 47 15
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
499 499 499 1
499 499 491 89
499 499 461 191
499 499 419 271
499 497 437 245
499 481 421 299
499 475 467 233
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
462 438 430 396
461 443 425 397
461 437 433 395
460 446 422 398
458 452 410 406
457 455 433 379
457 453 411 405
457 441 435 393
455 449 443 377
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
I'm lucky, if you rest $1$ to $747004$ you have a number wich is divisible by $3$ and $1$ is a square
$$747004=1^2+499^2+499^2+499^2$$
Since Geoff Robinson comment, we have: $$ 747004=444^2+606^2+414^2+106^2 $$