Show that for all $x\in\mathbb{R}$ $$E\left(x+\frac{1}{2}\right)=E(2x)-E(x)$$ where $E(x)$ is the integer part of $x$, that is the number $p\in\mathbb{Z}$ such that $p\le x <p+1$.
Progress: so far I know that $p+\frac{1}{2}<x+\frac{1}{2}<p+\frac{3}{2}$, and I'm stuck here.
Observe few properties about $E(x)$:
So by considering the 2 possible cases:
For $\frac12\le r<1$, we have $1\le \frac12+r<\frac32$, so
\begin{align} E(x+\frac12)&=E(E(x)+r+\frac12)\\&=E(E(x)+1)\\&=E(x)+1 \end{align}
While
\begin{align} E(2x)-E(x)&=E(2E(x)+2r)-E(E(x)+r)\\&=E(2E(x)+1)-E(E(x))\\&=2E(x)+1-E(x)\\&=E(x)+1\\&=E(x+\frac12) \end{align}
Similar for $0\le r<\frac12$.