Let be $ f:X\to X$ a homogeneous function of degree 1 definied on a real Banach space $X$ and suppose that exists $u\in X$ such that $f(u)=u$. Let be $L$ the Frechet derivative of $f$ at $u$, i.e. $L=f'(u)$. I would like to prove that $Lu=u$. Any hint?
2026-02-22 21:26:52.1771795612
Frechet derivative of an homogeneous function
66 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FRECHET-DERIVATIVE
- Proof of Fréchet Differentiability - general instruction and specific problem
- Proof verification + help on last step - Fréchet Differentiable of bilinear function
- Notion of continuous partial derivatives in Banach spaces
- Fréchet derivative of matrix-valued function
- If $ \|G(x+ty)\|<\|G(x)\| $, is then $ \|G(x) + tG'(x)[y]\| <\|G(x)\| $?
- Prove $\lim_{h \to 0^{+}}\frac{\lVert u +hv \rVert_{\infty} - \lVert u \rVert_{\infty}}{h}=\max_{x \in M}(v\cdot \operatorname{sign}(u))$
- How to show that $\Psi: E \rightarrow E$, $\Psi(f) = \sin(f(t))$ is continuous and differentiable?
- Frechet derivative of an homogeneous function
- Calculating a Frechet derivative of a function of functions
- Prove that $f$ is linear
Related Questions in FIXED-POINTS
- Banach and Caristi fixed point theorems
- Using Fixed point iteration to find sum of a Serias
- Do chaos and/or limit cycles always require the existence of an unstable fixed point?
- Dynamical System is fixed point at origin hyperbolic or asymptotically stable and is the system Hamiltonian
- What type of bifurcation point is this?
- Finding an eigenvector (fixed point) of a linear system of equations
- Only closed homoclinic orbits?
- Is this mapping contractive?
- Fixed points of absolute set difference
- Convergence rate of Newton's method (Modified+Linear)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
We have: $$ \lambda u = \lambda f(u) = (1 + \lambda)f(u) - f(u) = f(u + \lambda u) - f(u) = L(\lambda u) + o(\lambda u) = \lambda L(u) + o(\lambda). $$ Now, divide by $\lambda$ and take $\lambda\to 0$.
EDIT: an easy generalization: $f$ homogeneous of degree 1 and $f(u) = v\implies f'(u)u = v$: $$ \lambda v = \lambda f(u) = (1 + \lambda)f(u) - f(u) = f(u + \lambda u) - f(u) = L(\lambda u) + o(\lambda u) = \lambda L(u) + o(\lambda). $$ And link about the o-notation.