Get matrix $A^{n}$ problem with eigenvalues and eigenvectors

142 Views Asked by At

i have problem with some matrix

$A = \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & \frac{1}{2} \end{bmatrix}$

To get $A^{n} = P J^{n} P^{-1}$

$\begin{bmatrix} \frac{1}{2} - \lambda & 0 \\ 2 & \frac{1}{2} - \lambda \end{bmatrix}$

$J^{n} =\begin{bmatrix} (\frac{1}{2})^{n} & n(\frac{1}{2})^{n-1} \\ 0 & (\frac{1}{2})^{n} \end{bmatrix}$ i'm not sure how to create this matrix

So the eigenvaues are $\lambda_{1} = \lambda_{2} = \frac{1}{2}$ then $\begin{bmatrix} 0 & 0 \\ 2 & 0\\ \end{bmatrix}$ $\begin{bmatrix} x\\ y\\ \end{bmatrix}$ = $\begin{bmatrix} 0\\ 0\\ \end{bmatrix}$

The eigenvector are : $\begin{bmatrix} x\\ 0\\ \end{bmatrix}$

The question is: How look like $P$ matrix?

edit: So the answer will be: $A^{n} =\begin{bmatrix} 0 & \frac{1}{2}\\ 1 & 1\\ \end{bmatrix}$ $\begin{bmatrix} (\frac{1}{2})^{n} & n(\frac{1}{2})^{n-1} \\ 0 & (\frac{1}{2})^{n} \end{bmatrix}$ $\begin{bmatrix} -2 & 1\\ 2 & 0\\ \end{bmatrix}$

Is that right?

1

There are 1 best solutions below

5
On BEST ANSWER

The eigenvalues are indeed $\lambda_1 = \lambda_2 = \lambda =\frac 12$. The matrix $P$ contains as its columns the right hand (generalized) eigenvectors of $A$, which are linearly independent. Solving the system $$(A- \lambda I) \mathbf{v} =\mathbf 0\iff \begin{bmatrix} 0 &0 \\ 2 & 0 \end{bmatrix}\cdot \begin{bmatrix} x \\ y\end{bmatrix} = \begin{bmatrix} 0 \\ 0\end{bmatrix}$$ yields that $x = 0$ and $y \in \mathbb R^*$ (since the zero vector cannot be an eigenvector).Thus, we can consider the eigenvector $\mathbf{v} = \begin{bmatrix} 0\\1\end{bmatrix}.$

Due to $\dim V_{\lambda} = 1,$ in order to define matrix $P$ we need to find a generalized eigenvector $\mathbf w$ of rank $2$, such that $$\left(A-\frac 12 I\right)^2\mathbf w = \mathbf 0\\[2ex] \text {and} \\[2ex] \left(A- \frac 12 I\right)\mathbf w \neq \mathbf 0.$$ For that reason we define the vector $\mathbf w $ as the solution of the system $$\left(A- \frac 12 I\right) \mathbf w = \mathbf v.$$

That means we have to solve the linear system $$\begin{bmatrix} 0 & 0 \\2 & 0 \end{bmatrix} \cdot\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} =\begin{bmatrix}0 \\ 1\end{bmatrix}.$$

The matrix $P$ is equal to $P = \begin{bmatrix} 0 & w_1 \\ 1 & w_2 \end{bmatrix}$. Can you fill in the details?