Show that the equation $u_{xy}+u_x=0$, $x\leq x_0$, $y\leq y_0$ has the solution $\alpha(x)e^{-y}+\beta(y)$ where $\alpha,\beta$ are arbitrary single variable functions.
I have understood that I can integrate wrt $x$ to get $u_y+u=\gamma(y)$ and I am stuck there.
$$u_y+u=\gamma(y)$$ This a first order linear ODE (no $dx$ in it) $\frac{du}{dy}+u(y)=\gamma(y)$ .
The solution of the associated homogeneous ODE, $\frac{du}{dy}+u=0$ is $u=c\:e^{-y}$
Replacing the constant $c$ by an unknown function $v(y)$ leads to $u=e^{-y}v(y)$ , $$u_y+u=e^{-y}(-v+v')+e^{-y}v=e^{-y}v'=\gamma(y)$$ $$\frac{dv}{dy}=e^y\gamma(y)$$ $v(y)=\int e^y\gamma(y)dy=f(y)+$constant relatively to $y$. $$v(x,y)=f(y)+\alpha(x)$$ $u(x,y)=e^{-y}v(x,y)=e^{-y}\left(f(y)+\alpha(x) \right)$ $$u(x,y)=\beta(y)+e^{-y}\alpha(x)$$ with $\beta(y)=e^{-y}f(y)$