In this problem, I have to find the area of that blob. Pretty much I have to see if $\,N_x-M_y\,$ is equal to $1$. For the first choice, it is equal to $1$, yet the answer key says it is $4$?
2025-01-12 23:32:51.1736724771
green's theorem relating to calculating area
799 Views Asked by user3874530 https://math.techqa.club/user/user3874530/detail AtRelated Questions in MULTIVARIABLE-CALCULUS
- I don't understand why we represent functions $f:I \subseteq \Bbb R \to \Bbb R^2$ the way we do.
- question over a integration changes order and hard to compute
- Using the chain rule of differentiation to evaluate an integral along a curve
- Parametrization of intersection of curves
- Parametric line segment in 3-space
- Partial derivative of composition with multivariable function.
- Proving limits with epsilon delta for Multivariable Functions
- How do you find the partial derivative of $F(u, v) = f(x(u, v), y(u, v))$?
- Help with multivariable limit involving log
- A question about gradient.
Related Questions in GREENS-THEOREM
- Integrating using Green's Theorem
- Finding unit normal vector in case of flux across a curve
- Verification of Green's Theorem homework help
- How to calculate the line integral and substitute $dx\,\ dy$ in a question on Green's theorem
- Solving line integral without using Green’s theorem
- Green's theorem and intersection of plane with sphere
- green's theorem relating to calculating area
- Line integral using Green's Extended Theorem.
- Find surface area by calculating surface integrals
- Use Green's Theorem to evaluate this problem? Step by step solution?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity