A group P acts on a set Ω. We know that|P| = 81 and |Ω| = 98. Let $Ω_0$ be the set of elements of Ω that are fixed by every element of P. In other words, $Ω_0$ ={α ∈ Ω | α · g = α for all g ∈ P}. Show |$Ω_0$| = 3k + 2 for some integer k with 0 ≤ k ≤ 32.
2026-02-22 20:51:13.1771793473
Group of order 81 acting on a set of order 98
113 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in P-GROUPS
- Subgroup of index p in an infinite p-group?
- Some conditions on a finite non-abelian $2$-group
- The commutator of two subgroup in a finite group
- Group of order 81 acting on a set of order 98
- Group of order $2^{67}$
- Fundamental Theorem of Abelian Groups - intuition regarding Lemma
- Finite $2$-group with derived subgroup of order 8
- Determine possible $p$-groups from center and quotient
- Central quotient of $p$-groups
- Show that the dihedral group $D_{16}$ is the internal direct product of its Sylow subgroups.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
This is a direct application of a theorem about $p$-groups: if $X$ is a finite set with an action of a $p$-group $G$, then the order of $X$ is equivalent modulo $p$ to the fixed points of the action. I will leave it to you to get the desired consequence.
And while we're at it, let's remember why this is true. The size of each orbit of the action must divide the order of $G$, and so it is either a power of $p$ or $1$. Note that the orbits of size one are exactly the fixed points of the action. Thus $$ \#X = \sum_{\text{orbits } O \text{ in } X} \# O \equiv \sum_{\text{orbits of size one in } X} 1 \equiv (\text{number of fixed points}) \pmod p. $$