If I have a positive semidefinite matrix $A$ and a negative definite matrix $B$, is it true that their Hadamard product $A\circ B$ is negative semidefinite? Ideally I am looking for a proof / a complete argument for why it is true / false that I can replicate.
2026-02-22 21:32:54.1771795974
Hadamard product of a positive semidefinite matrix with a negative definite matrix
2.9k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in DETERMINANT
- Form square matrix out of a non square matrix to calculate determinant
- Let $T:V\to W$ on finite dimensional vector spaces, is it possible to use the determinant to determine that $T$ is invertible.
- Optimization over images of column-orthogonal matrices through rotations and reflections
- Effect of adding a zero row and column on the eigenvalues of a matrix
- Geometric intuition behind determinant properties
- Help with proof or counterexample: $A^3=0 \implies I_n+A$ is invertible
- Prove that every matrix $\in\mathbb{R}^{3\times3}$ with determinant equal 6 can be written as $AB$, when $|B|=1$ and $A$ is the given matrix.
- Properties of determinant exponent
- How to determine the characteristic polynomial of the $4\times4$ real matrix of ones?
- The determinant of the sum of a positive definite matrix with a symmetric singular matrix
Related Questions in POSITIVE-SEMIDEFINITE
- Minimization of a convex quadratic form
- set of positive definite matrices are the interior of set of positive semidefinite matrices
- How to solve for $L$ in $X = LL^T$?
- How the principal submatrix of a PSD matrix could be positive definite?
- Hadamard product of a positive semidefinite matrix with a negative definite matrix
- The square root of a positive semidefinite matrix
- Optimization of the sum of a convex and a non-convex function?
- Proving that a particular set is full dimensional.
- Finding bounds for a subset of the positive semidefinite cone
- Decomposition of a hermitian symmetric matrix.
Related Questions in HADAMARD-PRODUCT
- what is transposition Hadamard product?
- Bounding the determinant of principal sub-matrices of the Kroneker product
- inequality on matrix Hadamard Products $\|A \odot X\|_F$
- Relation for the determinant of a special Hadamard product.
- solve matrix equation involving Hadamard products
- Check Reasoning On Calculation Involving Diagonal Matrix and Matrix and Hadamard Products
- Determinant defined as Product of Columns
- Derivative of Frobenius norm of Hadamard Product
- Derivative of trace involving inverse and Hadamard product
- Matrix notation for element-wise raising to the power of $n$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Schur product theorem states that Hadamard product of two positive semidefinite matrices is positive semidefinite.
$B$ is negative definite $\implies -B$ is positive definite.
Since $$A \circ B = -(A \circ (-B)),$$ and $A \circ (-B)$ is positive semidefinite by Schur product theorem.
We conclude that $A \circ B$ is negative semidefinite.