The prime factorization of 20711 is 139 x 149. (139 and 149 are both prime). I found this out through trial and error for a problem on one of my tests, but I don't see how to find it normally.
2026-02-22 19:28:28.1771788508
How do I solve complicated prime factorization problems? (Ex: 20711)
120 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PRIME-FACTORIZATION
- For which natural numbers are $\phi(n)=2$?
- Fractions of the form $\frac{a}{k}\cdot\frac{b}{k}\cdot\frac{c}{k}\cdots=\frac{n}{k}$
- (Number of perfect powers ≤ n) ∼ $\sqrt{n}$?
- Is there a pattern to addition of primesFactored numbers?
- Proof of Fundamental Theorem of Arithmetic: Uniqueness Part of Proof
- Find a prime factor of $7999973$ without a calculator
- Proof verification: Let $gcd(x,y)=1$. If $xy$ is a perfect square, then $x$ and $y$ are perfect squares.
- An idea for approaching Brocard's problem ($n!+1=m^2$)
- Looking for complex roots of unity which also happen to be complex primes
- How can I prove that all prime factors of $f(n,p)=(n+1)^p-n^p$ have form $2kp+1$ (if $p$ - odd prime)?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
How about trying $20711=20736 - 25= 144^2-5^2=(144-5)(144+5)=139*149$?
I do not know if this is valid but this is the first technique I try: finding a square number larger than the input number and then applying $a^2-b^2 = (a+b)(a-b)$.
It generally works for me, though I must say prime factorisation at my level is generally done by finding all primes lower than $\sqrt n$, where $n$ is the input number.
Is this technique even valid?
Edit: Turns out this technique is valid and was originally used by Fermat (link in the comments courtesy Mark). Using Fermat's technique in association with trial division happens to be (according to Wikipedia) be faster than either of the $2$ methods individually.