I understand the formula, but what does it even mean for a Fourier transform to convert from time domain to frequency domain? And how is it doing so? Even, in the field of image processing, why do they say that it converts from spatial to frequency domain?
2026-02-22 21:18:42.1771795122
How does Fourier transform convert from time domain to frequency domain
1.1k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FOURIER-TRANSFORM
- Proof of Fourier transform of cos$2\pi ft$
- Find the convergence of series of a sequence of functions in $L^2(\mathbb{R})$
- solving a simple ODE with Fourier transform
- How can we prove that $e^{-jωn}$ converges at $0$ while n -> infinity?
- Show that a periodic function $f(t)$ with period $T$ can be written as $ f(t) = f_T (t) \star \frac{1}{T} \text{comb}\bigg(\frac{t}{T}\bigg) $
- Taking the Discrete Inverse Fourier Transform of a Continuous Forward Transform
- Arcsin of a number greater than one
- Complex numbers in programming
- Power spectrum of field over an arbitrarily-shaped country
- Computing an inverse Fourier Transform / Solving the free particle Schrödinger equation with a gaussian wave packet as initial condition
Related Questions in IMAGE-PROCESSING
- Show that a periodic function $f(t)$ with period $T$ can be written as $ f(t) = f_T (t) \star \frac{1}{T} \text{comb}\bigg(\frac{t}{T}\bigg) $
- Apply affine heat equation on images
- Are there analogues to orthogonal transformations in non-orientable surfaces?
- How does Fourier transform convert from time domain to frequency domain
- Increasing the accuracy with techniques of interpolation
- How to interpret probability density function of transformed variable?
- Why are median filters non-separable?
- Solving Deconvolution using Conjugate Gradient
- How to deblur a image matrix blured by two circulant matrix?
- Orientations of pixels of image
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The Fourier transform decomposes a signal into the weights of orthonormal basis functions: sines and cosines of different frequencies. An analogy would be decomposing a vector in the x-y plane into its x and y components, which are the weights applied to the unit vectors along the x axis and y axis (the orthonormal basis vectors of the x-y plane). Sinusoidal functions can be functions of space as well as time. For image processing you're still decomposing the signal in terms of sines and cosines, the frequencies just correspond to changing in space vs changing in time.