I often see references to treewidth being a measure of sparseness, but is there a known bound? More exactly, given a graph $G$ with $n$ vertices and treewidth at most $k$, is there a function of $n$ and $k$ which bounds the possible number of edges in $G$?
2026-02-22 23:25:31.1771802731
How sparse is a graph of bounded treewidth?
510 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in EXTREMAL-GRAPH-THEORY
- Maximum Number of Edges in a Graph Without a Cycle of length $4$
- $6$-regular graph of order $25$ and diameter $2$
- Given a graph with n vertices, if it have more than $\frac{nt}{2}$ edges then there exists a simple path of length $t+1$.
- Extremal combinatorics problem on graph matching
- How sparse is a graph of bounded treewidth?
- Extremal graph without cycle length $k$ or longer.
- projecting antichains to middlemost levels
- Lower bound for the Ramsey number $R(3,t)$
- Help with induction for graph with no path of length $k$
- Prove that a graph with $100$ vertices with each edge having degree at most $4$ contains an empty graph of order $20$.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The maximal graphs with treewidth $k$ are the $k$-trees which are constructed by starting with a $(k+1)$-clique and iteratively adding vertices of degree $k$ such that its neighbors form a $k$-clique.
The total number of edges in a $k$-tree with $n$ vertices is $\binom{k+1}{2} + k(n - k - 1)$ which is found by counting the edges in the $(k+1)$-clique and the edges incident to the $n-k-1$ vertices iteratively added to the $k$-tree. Since any graph $G$ with treewidth $k$ is a subgraph of a $k$-tree this is an upper bound on $|E(G)|$.