For this question, I can't really seem to get the final answer. I get stuck on the step right before you take the limits. Can anyone please help me out?
$$\begin{align}\lim_{n\to \infty}\sum_{k=0}^n (k^2+k+1) & =\lim_{n\to\infty}(\sum_{k=0}^n k^2 + \sum_{k=0}^n k + \sum_{k=0}^n 1)\\ & =\lim_{n\to \infty}(\frac{n(2n+1)(n+1)}{6} + \frac{n(n+1)}{2} + n)\\ & = \lim_{n\to \infty}(\frac{2n^3+6n^2+10n}{6}) \end{align}$$
Simply note that
$$\frac{2n^3+6n^2+10n}{6} \ge\frac{0+0+10n}{6} = \frac53n\ge n\to +\infty$$