I'm learning the subject Power Series and I can't figure out how to find the sum of the series $$\sum_{n=0}^\infty\frac{3^n}{n!(n+3)}$$.
I know that the power series $\sum_{n=0}^\infty\frac{3^n}{n!(n+3)}x^n$ is convergence for every $x$, and uniform convergence for every $[-r, r], r>0$ because $\lim\limits_{n \to\infty}|\frac{a_n}{a_{n+1}}|=\infty$. I don't know how to proceed, I think I should use the information that this power series convergence uniformly and then somehow Integrating/differentiating this Power Series.
Thanks!
$$ \sum_{n=0}^{+\infty}\frac{3^n}{n!\left(n+3\right)}=\frac{1}{27}\sum_{n=0}^{+\infty}\frac{1}{n!}\frac{3^{n+3}}{n+3} $$ And $$ \frac{3^{n+3}}{n+3}=\int_{0}^{3}x^{n+2}\text{d}x $$ Hence it becomes ( using uniform convergence on every compact of $\mathbb{R}$ especially $\left[0,3\right]$ ) $$ \sum_{n=0}^{+\infty}\frac{3^n}{n!\left(n+3\right)}=\frac{1}{27}\sum_{n=0}^{+\infty}\frac{1}{n!}\int_{0}^{3}x^{n+2}\text{d}x=\frac{1}{27}\int_{0}^{3}\sum_{n=0}^{+\infty}\frac{1}{n!}x^{n+2}\text{d}x $$ Then $$\sum_{n=0}^{+\infty}\frac{3^n}{n!\left(n+3\right)}=\frac{1}{27}\int_{0}^{3}x^2e^{x}\text{d}x$$ Hence you conlude ( integrating by parts ) $$ \sum_{n=0}^{+\infty}\frac{3^n}{n!\left(n+3\right)}=\frac{1}{27}\left(5e^3-2\right) $$