How to evaluate $ \int_0^\infty \frac{\log x}{(x^2+a^2)^2} dx $

641 Views Asked by At

Evaluate $$ \int_0^\infty \frac{\log x}{(x^2+a^2)^2} dx $$ $$(a>0) $$

How can I use contour appropriately?

What is the meaning of this integral?


(additionally posted)

I tried to solve this problem.

First, I take a branch $$ \Omega=\mathbb C - \{z|\text{Re}(z)=0\; \text{and} \; \text{Im}(z)\le0\} $$

Then ${\log_\Omega z}=\log r +i\theta (-\frac{\pi}{2}\lt\theta\lt\frac{3\pi}{2})$

Now, $\frac{\log z}{(z^2+a^2)^2}$ is holomorphic in $\Omega - \{ai\}$ with double poles at $ai$.

Now I'll take the contour which forms an indented semicircle.

For any $0\lt\epsilon\lt{a}$, where $\max (1,a)\lt R$, $\Gamma_{R,\epsilon}\subseteq\Omega - \{ai\}$ and in $\Omega$, $i=e^{i\pi/2}$.

Now using the residue formula, $$2\pi{i}\operatorname*{Res}_{z=ai}\frac{\log_\Omega{z}}{(z^2+a^2)^2}=2\pi{i}\operatorname*{lim}_{z\to ai}\frac{d}{dz}(z-ai)^2\frac{\log_\Omega{z}}{(z^2+a^2)^2}=\frac{\pi}{2a^3}(\log_\Omega{ai}-1)$$

Now, the last part, take $i=e^{i\pi/2}$, then is equal to $\frac{\pi}{2a^3}(\log{a}-1+i\pi/2)$

So, I can split integrals by four parts,

$$\int_{\epsilon}^R dz + \int_{\Gamma_R} dz + \int_{-R}^{-\epsilon} dz + \int_{\Gamma_\epsilon} dz$$

First, evaluate the second part,

$$\left|\int_{\Gamma_R} dz\right|\le\int_0^{\pi}\left|\frac{\log_\Omega{Re^{i\theta}}}{(R^2e^{2i\theta}+a^2)^2}iRe^{i\theta}\right|d\theta$$

Note that

$$\left|\log_\Omega{Re^{i\theta}}\right|=\left|\log R+i\theta\right|\le\left|\log R\right|+|\theta|$$ $$\left|R^2e^{2i\theta}+a^2\right|\ge R^2-a^2\quad (R\gt a)$$

Then, 2nd part $\le\frac{R(\pi R+\frac{\pi^2}{2})}{(R^2+a^2)^2}\to 0\; \text{as} \; R \to \infty\quad \left|\log R\right|\lt R\;\text{where}\;(R\gt 1)$

So, 4th part similarly, goes to $\;0$.

Then 3rd part, substitute for $\;t=-z$,

$$\int_\epsilon^{R}\frac{\log t}{(t^2+a^2)^2}dt + i\pi\int_\epsilon^{R}\frac{dt}{(t^2+a^2)^2}$$

And $\;i\pi\lim\limits_{{\epsilon \to 0},\;{R\to\infty}}\int_\epsilon^{R}\frac{dt}{(t^2+a^2)^2}=\frac{\pi}{4a^3}$

With tedious calculations, I got $\frac{\pi}{4a^3}(\log a -1)$.

4

There are 4 best solutions below

2
On BEST ANSWER

One thing you can do when confronted with integrals of the form

$$\int_0^{\infty} dx \, f(x) \log{x} $$

is to consider a contour integral of the form

$$\oint_C dz \, f(z) \, \log^2{z} $$

where $C$ is a keyhole contour about the positive real axis, as pictured below.

enter image description here

To evaluate the contour integral, we parametrize about each piece of the contour. There are four such pieces: a large arc of radius $R$, a small arc of radius $\epsilon$, and lines above and below the positive real axis.

This contour allows us to derive the integral of interest by exploiting the multivalued behavior of the log at a branch point. In this case, we define the argument of the complex numbers above the positive real axis to be zero and below to be $2 \pi$. Thus, above the real axis $z=x$ while below $z=x e^{i 2 \pi}$. This difference is crucial when taking logs.

I will let the reader perform the analysis as the outer radius $R \to \infty$ and inner radius $\epsilon \to 0$; the contour integral is then equal to

$$\int_0^{\infty} dx \, f(x) \log^2{x} - \int_0^{\infty} dx \, f(x) (\log{x}+i 2 \pi)^2 = -i 4 \pi \int_0^{\infty} dx \, f(x) \log{x} + 4 \pi^2 \int_0^{\infty} dx \, f(x) $$

By the residue theorem, the contour integral is also equal to $i 2 \pi$ times the sum of the residues at the poles $z_k$ of $f$ in the complex plane outside of the origin. Thus,

$$\int_0^{\infty} dx \, f(x) \log{x} = -i \pi \int_0^{\infty} dx \, f(x) - \frac12 \sum_k \operatorname*{Res}_{z=z_k} [f(z) \log^2{z}]$$

In the OP's case,

$$f(z) = \frac1{(z^2+a^2)^2}$$

so the poles are of order two and the residues must be computed accordingly. The OP should be able to derive

$$ \operatorname*{Res}_{z=\pm i a} \frac{\log^2{z}}{(z^2+a^2)^2} = \left[\frac{d}{dz} \frac{\log^2{z}}{(z\pm i a)^2} \right ]_{z=\pm i a} $$

Note also that the poles must have their arguments between $[0,2 \pi]$ for the residue calculation to come out correctly. In this case, we may say that the poles are at $z_{\pm}=\pm i a$, but it is important to note that $z_+ = a e^{i \pi/2}$ and $z_-=a e^{i 3 \pi/2}$.

Further, it should not escape notice that the final result is in terms of an integral over the function $f$ without the log term. You should be able to see that the integral may be evaluated in exactly the same way as the original integral by introducing a log and integrating over the keyhole contour $C$. The result is

$$\int_0^{\infty} dx \, f(x) = -\sum_k \operatorname*{Res}_{z=z_k} [f(z) \log{z}]$$

At this point the OP has everything needed to carry out the computation.

0
On

I thought that it might be instructive to add to the answer posted by @RonGordon. We note that the integral of interest $I_1(a^2)$ can be written

$$I_1(a^2)=\int_0^\infty \frac{\log^2 x}{(x^2+a^2)^2}\,dx=-\frac{dI_2(a^2)}{d(a^2)}$$

where

$$I_2(a^2)=\int_0^\infty\frac{\log^2x}{x^2+a^2}\,dx$$

Now, we can evaluate the integral $J(a^2)$

$$J(a^2)=\oint_C \frac{\log^2z}{z^2+a^2}\,dz$$

where $C$ is the key-hole contour defined in the aforementioned post. There, we have

$$\begin{align} J(a^2)&=-4\pi i\,I_2(a^2)+4\pi^2\int_0^\infty \frac{1}{x^2+a^2}\,dx \\\\ &=-4\pi i\, I_2(a^2)+\frac{2\pi^3}{a}\\\\ &=2\pi i \left(\text{Res}\left(\frac{\log^2 z}{z^2+a^2},ia\right)+\left(\text{Res}\left(\frac{\log^2 z}{z^2+a^2},-ia\right)\right)\right) \end{align}$$

Finally, after calculating the residues, and simplifying, we obtain the integral $I_2(a^2)$ whereupon differentiating with respect to $a^2$ recovers the integral of interest $I_1(a^2)$. And we are done.

3
On

Let $x=at$. We then have \begin{align} I & = \int_0^{\infty} \dfrac{\log(x)}{(x^2+a^2)^2}dx = \dfrac1{a^3}\cdot\int_0^{\infty} \dfrac{\log(at)}{(t^2+1)^2}dt = \dfrac1{a^3}\left(\int_0^{\infty} \dfrac{\log(a)}{(t^2+1)^2}dt + \int_0^{\infty} \dfrac{\log(t)}{(t^2+1)^2}dt\right)\\ & = \dfrac{J+K}{a^3} \end{align} where $J=\displaystyle\int_0^{\infty} \dfrac{\log(a)}{(t^2+1)^2}dt$ and $K = \displaystyle\int_0^{\infty} \dfrac{\log(t)}{(t^2+1)^2}dt$.

$$J = \int_0^{\pi/2}\dfrac{\log(a)}{(\tan^2(y)+1)^2}\sec^2(y)dy = \log(a)\int_0^{\pi/2}\cos^2(y)dy = \dfrac{\pi\log(a)}4$$

\begin{align} K & = \displaystyle\int_0^1 \dfrac{\log(t)}{(t^2+1)^2}dt + \displaystyle\int_1^{\infty} \dfrac{\log(t)}{(t^2+1)^2}dt\\ & = \displaystyle\int_0^1 \dfrac{\log(t)}{(t^2+1)^2}dt + \displaystyle\int_1^0 \dfrac{\log(1/t)}{(1/t^2+1)^2}\dfrac{-dt}{t^2}\\ & = \int_0^1 \dfrac{(1-t^2)}{(1+t^2)^2}\cdot\log(t)dt\\ & = \sum_{k=0}^{\infty}(-1)^k (2k+1) \int_0^1 t^{2k}\log(t)dt\\ & = \sum_{k=0}^{\infty}(-1)^{k+1} \dfrac1{2k+1}\\ & = -1 + \dfrac13 - \dfrac15 + \dfrac17 \mp \cdots = -\dfrac{\pi}4 \end{align} Hence, the integral is $$\dfrac{\pi(\log(a)-1)}{4a^3}$$

0
On

Real Method

We first evaluate the integral $$ J=\int_0^{\infty} \frac{\ln x}{x^2+a^2} d x $$ Putting $x=\tan \theta$ yields $$ \begin{aligned} J& =\int_0^{\infty} \frac{\ln x}{x^2+a^2} d x \\ & =\int_0^{\frac{\pi}{2}} \frac{\ln (a \tan \theta)}{a^2 \sec ^2 \theta} \cdot a \sec ^2 \theta d \theta \\ & =\frac{1}{a} \int_0^{\frac{\pi}{2}} \ln (a \tan \theta) d \theta \\ & =\frac{1}{a} \int_0^{\frac{\pi}{2}} \ln a d \theta+ \underbrace{\int_0^{\frac{\pi}{2}} \ln (\tan \theta) d \theta }_{=0} \\ & =\frac{\pi}{2} \frac{\ln a}{a} \end{aligned} $$ Differentiating both sides w.r.t. $a$ yields $$ \begin{aligned} & -2 a \int_0^{\infty} \frac{\ln x}{\left(x^2+a^2\right)^2} d x=\frac{\pi}{2} \frac{1-\ln a}{a^2} \\ \Rightarrow & \int_0^{\infty} \frac{\ln x}{\left(x^2+a^2\right)^2}=\frac{\pi(\ln a-1)}{4 a^3} \end{aligned} $$