Cauchy Integral Formula (When f(z) is not analytic everywhere inside C)

1.5k Views Asked by At

Let $\alpha$ be a given complex number satisfying $0<|\alpha|<1$, and let $\gamma$ be the circle $|z|=2$ oriented in the counterclockwise direction. Determine the value of $$ \int_{\gamma} \frac{\operatorname{Im} z}{z-\alpha} d z $$ in terms of $\alpha .$ Here as usual, $\operatorname{Im} z$ denotes the imaginary part of $z$.

For the question, I have thought about it for a long time.

My idea is as follow:

C (|z| = 2) is a positively oriented simple connected contour. The point $\alpha$ is also within C.

$|z|^2 = 4$

Since Im(z) = $\frac{1}{2i}$($z - \bar z$) and $|z|^2 = z\bar z$, we can express Im(z) as:

Im(z) = $\frac{1}{2i}(z - \frac{4}{z})$ = $\frac{z}{2i} - \frac{2}{iz}$

So f(z) = Im(z) = $\frac{z}{2i} - \frac{2}{iz}$

I am confident to use the Contour integral formula to evaluate for the part $\frac{z}{2i}$, because it is analytic everywhere within or in C ($|z| = 2$).

However, there is a singular point z = 0 for $\frac{2}{iz}$ within C ($|z| = 2$).

Can I still use the contour integral formula?

The only way I can think of is:

$\int_y \frac{Im(z)}{z - \alpha}dz = 2\pi i f(\alpha) = \frac{\alpha}{2i} - \frac{2}{i \alpha}$

But I still feel that something is wrong because f(z) is not analytic at z = 0.

Can someone please give me some advice on this question?

2

There are 2 best solutions below

1
On BEST ANSWER

More of a real-variable approach: The integral equals

$$\int_0^{2\pi} \frac{(2\sin t) 2ie^{it}}{2e^{it}-\alpha}\,dt = 2i\int_0^{2\pi} \frac{\sin t }{1-(\alpha/2)e^{-it}}\,dt$$ $$\tag 1= 2i\int_0^{2\pi} \sin t\, [1+(\alpha/2)e^{-it} + (\alpha/2)^2e^{-2it} + \cdots ]\,dt.$$

We have all the convergence we need to interchange integral and sum in $(1).$ Recall that over $[0,2\pi],$ $\sin t$ is orthogonal to all the functions in the infinite sum, except for $(\alpha/2)e^{-it}.$ So $(1)$ equals

$$2i\int_0^{2\pi} (\sin t) (\alpha/2)(\cos t -i\sin t)\,dt = \alpha\int_0^{2\pi} \sin^2 t\, dt = \alpha \pi.$$

7
On

You are on the right track. We have

$$\begin{align} \oint_{|z|=2}\frac{\text{Im}(z)}{z-\alpha}\,dz&=\oint_{|z|=2}\frac{1}{2i}\frac{z-\bar z}{z-\alpha}\,dz\\\\ &=\frac{1}{2i}\oint_{|z|=2}\left(\frac{z}{z-\alpha}\right)\,dz-\frac{1}{2i}\oint_{|z|=2}\left(\frac{\bar z}{z-\alpha}\right)\,dz\\\\ &=\frac{1}{2i}\oint_{|z|=2}\left(\frac{z}{z-\alpha}\right)\,dz-\frac{1}{2i}\oint_{|z|=2}\left(\frac{|z|^2}{z(z-\alpha)}\right)\,dz\\\\ &=\frac{1}{2i}\oint_{|z|=2}\left(\frac{z}{z-\alpha}\right)\,dz-\frac{1}{2i}\oint_{|z|=2}\left(\frac{4}{z(z-\alpha)}\right)\,dz\\\\ &=\frac{1}{2i}\oint_{|z|=2}\left(\frac{z}{z-\alpha}\right)\,dz-\frac{2}{i\alpha}\oint_{|z|=2}\left(\frac{1}{z-\alpha}-\frac{1}{z}\right)\,dz\\\\ &=\frac{1}{2i}\oint_{|z|=2}\left(\frac{z}{z-\alpha}\right)\,dz-\frac{2}{i\alpha}\oint_{|z|=2}\left(\frac{1}{z-\alpha}\right)\,dz+\frac{2}{i\alpha}\oint_{|z|=2}\left(\frac{1}{z}\right)\,dz\\\\ &=\frac{1}{2i\alpha}\oint_{|z|=2}\left(\frac{\alpha z-4}{z-\alpha}\right)\,dz+\frac{2}{i\alpha}\oint_{|z|=2}\left(\frac{1}{z}\right)\,dz \end{align}$$

Can you finish the problem now?