There is a well-known formula $\binom{n}{k} + \binom{n}{k + 1} = \binom{n+1}{k+1}$. How to formulate and prove its generalization for multinomial coefficients?
How to find and prove generalization of one of the formulas with binomial coefficients?
68 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtThere are 2 best solutions below
On
We know that:$$\Large(x_1+x_2+...+x_m)^n=\sum_{r_1+...+r_m=n}\frac{n!}{r_1!... r_m!}x_1^{r_1}...x_m^{r_m}$$ by writing $(x_1+x_2+...+x_m)^{n+1}=x_1(x_1+x_2+...+x_m)^n+...+x_n(x_1+x_2+...+x_m)^n$ and expanding each according to multinomial expansion we conclude:$$\sum_{r_1+...+r_2=n+1}\frac{(n+1)!}{r_1!... r_m!}x_1^{r_1}...x_m^{r_m}$$$$=\sum_{r_1+...+r_m=n}\frac{n!}{r_1!... r_m!}x_1^{r_1+1}...x_m^{r_m}+...+\sum_{r_1+...+r_m=n}\frac{n!}{r_1!... r_m!}x_1^{r_1}...x_m^{r_m+1}=\sum_{(r_1-1)+...+r_m=n}\frac{n!}{(r_1-1)!... r_m!}x_1^{r_1}...x_m^{r_m}+...+\sum_{r_1+...+(r_m-1)=n}\frac{n!}{r_1!... (r_m-1)!}x_1^{r_1}...x_m^{r_m}=\sum_{r_1+...+r_m=n+1}[\frac{n!}{(r_1-1)!... r_m!}+...+\frac{n!}{r_1!... (r_m-1)!}]x_1^{r_1}...x_m^{r_m}$$ therefore $$\frac{(n+1)!}{r_1!... r_m!}=\frac{n!}{(r_1-1)!... r_m!}+...+\frac{n!}{r_1!... (r_m-1)!}$$ or by a formal representation we have: $$\frac{(n+1)!}{r_1!... r_m!}=\sum_{i=1}^{m}\binom{n}{r_1,...,r_{i}-1,...,r_m}$$
Multinomial coefficient could be defined as $\binom{n}{a_1, \ldots, a_m} = {n! \over a_1! \cdot \ldots a_n!}$ or $\binom{n}{a_1, \ldots, a_n} = \binom{n}{a_1} \binom{n-a_1}{a_2} \binom{n-a_1-a_2}{a_3} \ldots \binom{a_{m-1}+a_m}{a_m}$. But the more convenient definition is "the number of ways to choose subsets of sizes $a_1, \ldots, a_m$ in the set of size $n$". Notice that the subsets are different.
The easiest way to prove the standard formula $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ is the following. Fix one element of the set. Let is be $A$. Then all subsets of size $k$ could be divided into two categories: the first one is the subsets containing $A$ and the second one is the subsets which do not contain $A$. The number of subsets in the first category is clearly $\binom{n-1}{k}$ and the number of subsets in the second category is $\binom{n-1}{k-1}$.
Let's try this trick for the multinomial coefficients. Pick an element $A$. There are $m$ options. It could belong to the first, second, $\ldots$, $m$-th subset. The number of ways to choose the subsets if $A$ belongs to the $i$-th subset is $\binom{n-1}{a_1, \ldots, a_{i-1}, a_i - 1, a_{i+1}, \ldots, a_m}$. Thus $$\binom{n}{a_1, \ldots, a_m} = \binom{n-1}{a_1-1, a_2, \ldots, a_m} +\binom{n-1}{a_1, a_2-1, \ldots, a_m} + \binom{n-1}{a_1, a_2, a_3-1 \ldots, a_m} + \ldots + \binom{n-1}{a_1, \ldots, a_{m-1}, a_m - 1}$$