How to graphically explain that the limit of yn/xn = $\sqrt 2$, as n approaches to infinity? Like, I know how to prove it algebraically.
2026-02-22 23:26:38.1771802798
how to geometrically explain why pell numbers close to sqrt 2
295 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in ELEMENTARY-NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- How do I show that if $\boldsymbol{a_1 a_2 a_3\cdots a_n \mid k}$ then each variable divides $\boldsymbol k $?
- Using only the digits 2,3,9, how many six-digit numbers can be formed which are divisible by 6?
- Algebra Proof including relative primes.
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
- algebraic integers of $x^4 -10x^2 +1$
- What exactly is the definition of Carmichael numbers?
- Number of divisors 888,888.
Related Questions in PELL-TYPE-EQUATIONS
- how to geometrically explain why pell numbers close to sqrt 2
- Solutions for $65x^2-57y^2=8 \cdot 61$
- Show that $x^2-dy^2 = -2$ with $d = m^2+2$ has infinitetly many integer solutions
- Fundamental solution to specific Pell equation
- Existence of Solution to Generalized Pell's Equation
- A question about principality of ideals dividing $(p)$ in imaginary quadratic field
- How to show that $x^2 - 37y^2 =2$ does not have integer solutions
- algebra direct connect pell eqn soln $(p_{nk},q_{nk})$ with $(p_n + q_n\sqrt{D})^k$
- Fundamental Solution of Pell's Equation
- Are the sets $\mathbb X=\{0,1,4,15,56,...,x_h,...\} $ and $\mathbb Y=\{0,2,12,70,408,...,y_i,...\}$ (excepting the elements $x_0=y_0=0$) disjunct?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

Perhaps not quite what you want, but an explanation how the heron-method works.
We want to determine the length of a square with area $2$. We start with the rectangular with sides $1$ and $2$. To get closer to a square, we take the arithmetic mean of the sides (which is $\frac{3}{2}$ and determine the corresponding side (which is $\frac{4}{3}$). This can be repeated and leads to the iteration $$x_{n+1}=\frac{x_n+\frac{2}{x_n}}{2}=\frac{x_n^2+2}{2x_n}$$ which is exactly the heron-method. If we start with $x_0=1$, the fractions are among the partial fractions resulting from the continued fraction.