Let $f\in C_{0}^{\infty}((-1,1))$. Prove that for any $t\in (-1,1)$ we have $$(f(t))^4\le \left(\int_{-1}^{1}\dfrac{[2(1-|x|)f'(x)-f(x)][2(1-|x|)f'(x)+f(x)]}{4(1-|x|^2)}dx\right)\cdot\left(\int_{-1}^{1}|f(x)|^2dx\right)$$
Thank
Let $f\in C_{0}^{\infty}((-1,1))$. Prove that for any $t\in (-1,1)$ we have $$(f(t))^4\le \left(\int_{-1}^{1}\dfrac{[2(1-|x|)f'(x)-f(x)][2(1-|x|)f'(x)+f(x)]}{4(1-|x|^2)}dx\right)\cdot\left(\int_{-1}^{1}|f(x)|^2dx\right)$$
Thank
Copyright © 2021 JogjaFile Inc.