The following inequality comes up in connection with motion in a dipole field. One has to show that $$\int_\overline{\theta}^{\pi}\frac{d\theta}{\sqrt{1-\lambda \cos{\theta}}}\gt\pi$$ where $$\overline{\theta}= \begin{cases}0, & 0\lt\lambda \lt1\\ \arccos(\frac{1}{\lambda}), & \lambda \gt 1\end{cases}.$$ The case $0\lt\lambda\lt 1$ is easily verified. For then $$\int_{0}^{\pi}\frac{d\theta}{\sqrt{1-\lambda \cos{\theta}}}=\int_{0}^{\pi/2}\frac{d\theta}{\sqrt{1-\lambda \cos{\theta}}}+\int_{\pi/2}^{\pi}\frac{d\theta}{\sqrt{1-\lambda \cos{\theta}}}$$ $$\implies\int_{0}^{\pi}\frac{d\theta}{\sqrt{1-\lambda \cos{\theta}}}=\int_{0}^{\pi/2}\frac{d\theta}{\sqrt{1-\lambda \cos{\theta}}}+\int_{0}^{\pi/2}\frac{d\theta}{\sqrt{1-\lambda \sin{\theta}}}\gt2\int_{0}^{\pi/2}d\theta=\pi.$$ However I am finding it difficult to prove the second case. Any pointers would be helpful.
Thanks.
NOTE: The inequality does not hold for all values of $\lambda > 1$, as has been noted in the following responses.
If I divide by $\lambda$ the inequality becomes: $$\int_{\underline{\theta}}^{\pi}\frac{d\theta}{\sqrt{\cos(\underline{\theta})-\cos(\theta)}}\geq \pi \sqrt{\lambda}$$
Now $$\int_{\pi/2}^{\pi}\frac{d\theta}{\sqrt{\cos(\underline{\theta})-\cos(\theta)}}\leq \int_{\pi/2}^{\pi}\frac{d\theta}{\sqrt{-\cos(\theta)}}d\theta=\int_0^{\pi/2}\frac{d\theta}{\sqrt{\sin(\theta)}}<+\infty$$ and as if $\theta \in [ \underline{\theta}, \pi/2]$, we have $\cos(\theta)-\cos(\underline{\theta})=(\theta-\underline{\theta})(-\sin(c))$ for some $c\in [ \underline{\theta}, \pi/2]$, we get $|\cos(\theta)-\cos(\underline{\theta})|\geq(\theta-\underline{\theta})\sin(\underline{\theta}) $ Hence $$\int_{\underline{\theta}}^{\pi/2}\frac{d\theta}{\sqrt{\cos(\underline{\theta})-\cos(\theta)}}\leq\frac{1}{\sqrt{\sin(\underline{\theta})}} \int_{\underline{\theta}}^{\pi/2}\frac{d\theta}{\sqrt{\theta-\underline{\theta}}}= 2\frac{\sqrt{\pi/2-\underline{\theta}}}{\sqrt{\sin(\underline{\theta})}} $$
Now as $\displaystyle \sin(\underline{\theta})=\sqrt{1-\frac{1}{\lambda^2}}$, we have $\displaystyle 2\frac{\sqrt{\pi/2-\underline{\theta}}}{\sqrt{\sin(\underline{\theta})}}$ bounded as $\lambda\to +\infty$, so if I am not wrong, there is a problem.