Using Poisson distribution, i need to prove that
$$P(X = x-1)\cdot P(X=x+1) \le (P(X=x))^2$$
How do i prove that this is true?
Using Poisson distribution, i need to prove that
$$P(X = x-1)\cdot P(X=x+1) \le (P(X=x))^2$$
How do i prove that this is true?
Copyright © 2021 JogjaFile Inc.
Hint:
Let $X\sim Poisson(\lambda)$. Then
$P(X=x-1)P(X=x+1)=\frac{\lambda^{x-1}e^{-\lambda}}{(x-1)!} \frac{\lambda^{x+1}e^{-\lambda}}{(x+1)!}=\frac{\lambda^{2x}e^{-2\lambda}}{(x-1)!(x+1)!}$.