Problem definition: $$u=f_x\frac{r_{11}x+r_{12}y+r_{13}z+t_1}{r_{31}x+r_{32}y+r_{33}z+t_3}+c_x$$ $$v=f_y\frac{r_{21}x+r_{22}y+r_{23}z+t_2}{r_{31}x+r_{32}y+r_{33}z+t_3}+c_y$$
Constraint conditions: $$|\frac{t_1}{t_3}|<a_1, |\frac{t_2}{t_3}|<a_2, |t_3|<a_3$$
Constant $f_x,f_y,c_x,c_y,a_1,a_2,a_3$ is known, given a set of $(u,v,x,y,z)$, how to solve $(r_{11},r_{12},r_{13},r_{23},r_{22},r_{23},r_{31},r_{32},r_{33},t_1,t_2,t_3)$ to fit the set of $(u,v,x,y,z)$.
Furthermore, how to use software such as Matlab to solve the above problem.
Thanks.