If a $2 \times 2$ matrix $A$ satisfies $A^2=I$, then is $A$ necessarily Hermitian?

78 Views Asked by At

I cannot find an appropriate counterexample.

Is there a counterexample? Or is $A$ indeed Hermitian?

1

There are 1 best solutions below

0
On BEST ANSWER

The matrix $$A = \begin{bmatrix}1&1\\0&-1\end{bmatrix}$$ is not Hermitian, but $$A^2 = \begin{bmatrix}1&1\\0&-1\end{bmatrix} \begin{bmatrix}1&1\\0&-1\end{bmatrix} = \begin{bmatrix}1&0\\0&1\end{bmatrix} = I.$$