Let
- $I\ne\emptyset$ be a set
- $E$ be a normed $\mathbb R$-vector space
$(x_i)_{i\in I}\subseteq E$ is called summable with sum $x\in E$ $:\Leftrightarrow$ $$\forall\varepsilon>0:\exists J\subseteq I\text{ with }|J|<\infty:\forall K\subseteq I\text{ with }|K|<\infty\text{ and }J\subseteq K:\left\|x-\sum_{k\in K}x_k\right\|_E<\varepsilon\;.\tag1$$ In that case, $$\sum_{i\in I}x_i:=x\;.$$ It's easy to show that $(x_i)_{i\in I}\subseteq[0,\infty)$ is summable $\Leftrightarrow$ $$x:=\sup_{J\subseteq I\::\:|J|<\infty}\sum_{j\in J}x_j<\infty\;.\tag2$$ In either case, $$\sum_{i\in I}x_i=x\;.\tag3$$
Are we able to show that $(x_i)_{i\in I}\subseteq E$ is summable $\Leftrightarrow$ $\left(\left\|x_i\right\|_E\right)_{i\in I}$ is summable?
I know how this can be proven in the case $E=\mathbb R$, but that proof doesn't have a natural generalization for arbitrary $E$.
If $E$ is finite-dimensional, then the result follows from $E = \Bbb{R}$ case.
In general, we only have $(\Leftarrow)$ direction even when $E$ is Banach. (This is the Weierstrass $M$-test.) Consider the space $E = c_0(\Bbb{N})$ of real-valued sequences which converge to $0$. This is a Banach space with respect to the supremum norm
$$\mathbf{a} = (a_n)_{n\in\Bbb{N}} \quad \Rightarrow \quad \| \mathbf{a} \|_{\sup} = \sup_{n\in\Bbb{N}} |a_n|. $$
Now let $\mathbf{a}_k = (a_{k,n})_{n\in\Bbb{N}}$ by
$$ a_{k,n} = \begin{cases} \frac{1}{k}, & k = n \\ 0, & \text{otherwise} \end{cases} $$
For any $\epsilon > 0$, we pick $J = \{1, \cdots, N\}$ with $N > \epsilon^{-1}$. Then for any finite subsets $K, L \subseteq \Bbb{N}$ with $K, L \supseteq J$, we have
$$ \left\| \sum_{k \in K} \mathbf{a}_k - \sum_{l \in L} \mathbf{a}_l \right\|_{\sup} \leq \frac{1}{N} < \epsilon. $$
This tells that the net $\{ \sum_{j \in J} \mathbf{a}_j : J \subseteq \Bbb{N}, |J| < \infty \}$ is Cauchy and hence $\sum_{j \in J} \mathbf{a}_j $ converges in $c_0(\Bbb{N})$. On the other hand, we have $\sum_{k\in\Bbb{N}} \|\mathbf{a}_k\|_{\sup} = \infty$.