I am studying probability and I have come across the following:
$$p\sum\limits_{n=1}^{\infty} (1-p)^{n-1}=1$$
But I can't see why the result is equal to 1. How can the above result be proven?
I am studying probability and I have come across the following:
$$p\sum\limits_{n=1}^{\infty} (1-p)^{n-1}=1$$
But I can't see why the result is equal to 1. How can the above result be proven?
$A= \sum_{n=1}^{\infty} a^n = a^1+\sum_{n=2}^{\infty} a^n = a^1+\sum_{n=1}^{\infty} a^{n+1}=a^1+a \times \sum_{n=1}^{\infty} a^n= a+aA$
then,
$A(1-a)=a \rightarrow A = \frac{a}{1-a}$. in your case:
$p\sum_{n=1}^{\infty} (1-p)^{n-1}=\frac{p}{1-p} \sum_{n=1}^{\infty} (1-p)^{n} = \frac{p}{1-p} \times \frac{1-p}{p}=1$