We know that we can prove GCH using the axiom of constructibility, and so that implies the the continuum is regular and uncountable, and therefore weakly-inaccessible. However, is this "inaccessible" in the same way that, say, measurable cardinals are inaccessible in ZFC? Or is this just a definition with no actual "inaccessibility" meaning in L?
2026-02-22 21:58:18.1771797498
Inaccessibility in L vs. Inaccessibility in ZFC
63 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LOGIC
- Theorems in MK would imply theorems in ZFC
- What is (mathematically) minimal computer architecture to run any software
- What formula proved in MK or Godel Incompleteness theorem
- Determine the truth value and validity of the propositions given
- Is this a commonly known paradox?
- Help with Propositional Logic Proof
- Symbol for assignment of a truth-value?
- Find the truth value of... empty set?
- Do I need the axiom of choice to prove this statement?
- Prove that any truth function $f$ can be represented by a formula $φ$ in cnf by negating a formula in dnf
Related Questions in SET-THEORY
- Theorems in MK would imply theorems in ZFC
- What formula proved in MK or Godel Incompleteness theorem
- Proving the schema of separation from replacement
- Understanding the Axiom of Replacement
- Ordinals and cardinals in ETCS set axiomatic
- Minimal model over forcing iteration
- How can I prove that the collection of all (class-)function from a proper class A to a class B is empty?
- max of limit cardinals smaller than a successor cardinal bigger than $\aleph_\omega$
- Canonical choice of many elements not contained in a set
- Non-standard axioms + ZF and rest of math
Related Questions in LARGE-CARDINALS
- Target of a superstrong embedding
- Possibility of preserving the ultrafilter on $\mathcal{P}_{\kappa}(\lambda)$ in V[G] after forcing with a <$\kappa$ directed closed poset?
- If $G$ is $P$-generic over $V$ and $G^*$ is $j''P$-generic over $M$ then $j$ can be extended to $V[G]$.
- Normality of some generic ultrafilter
- Does ZFC + the Axiom of Constructibility imply the nonexistence of inaccessible cardinals?
- Inaccessibility in L vs. Inaccessibility in ZFC
- Proof that the cofinality of the least worldly cardinal is $\omega$
- Inaccessible side-effects in MK
- Definition of an $\omega$-huge cardinal
- Showing that $\kappa$ is weakly compact in ultrapower.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The continuum is not a limit cardinal if you assume that $\sf GCH$ holds. It is $\aleph_1$. An inaccessible cardinal is a limit cardinal which is also regular. As far as cardinals go, $\aleph_1$ is one of the most accessible cardinals.
Measurable cardinals are inaccessible because we can prove that if there is $\lambda<\kappa$ such that $2^\lambda\geq\kappa$, then $\kappa$ is not measurable, and similarly if $\kappa$ is singular then it cannot be measurable. These combined imply that a measurable cardinal is inaccessible, and in fact strongly inaccessible even if we do not assume $\sf GCH$.
The place where $\sf GCH$ plays a role when it comes to inaccessibility is weak and strong inaccessibility: a regular limit cardinal is weakly inaccessible, but if we assume $\sf GCH$ (e.g. in $L$), then every limit cardinal is a strong limit cardinal, so every weakly inaccessible is in fact strongly inaccessible.
Without assuming $\sf GCH$ it is consistent that the continuum is weakly inaccessible (assuming that inaccessible cardinals are at all consistent).
The key point here is that at some point in the large cardinal hierarchy, we run into properties which are strong enough to prove strong inaccessibility even when $\sf GCH$ is not assumed, like measurability, whereas some properties are just not strong enough, like just being a regular limit cardinal.