I have some trouble evaluating the following integral:
$$\int_{v=0}^{\infty}\int_{u=0}^{\infty}\frac{\sqrt{uv}}{(u+v)^2}e^{-\frac{(u+v)}{2}}dudv.$$
I know that the value of this double integral is $\dfrac{\pi}{4}$.
However, I tried to solve it by using the change of variables: $t=u+v$ and separate the variables by bringing $v$ out. Doing so yields
$$\int_{v=0}^{\infty}\sqrt{v}\int_{t=v}^{\infty}\frac{\sqrt{t-v}}{t^2}e^{-\frac{t}{2}}dtdv,$$
but it does not seem to get into the form of Gaussian's error function.
$\def\d{\mathrm{d}} \def\e{\mathrm{e}}$By Tonelli's theorem,\begin{align*} \int_0^{+\infty} \int_v^{+\infty} \frac{\sqrt{v(t - v)}}{t^2} \e^{-\frac{t}{2}} \,\d t \d v &= \int_0^{+\infty} \int_0^t \frac{\sqrt{v(t - v)}}{t^2} \e^{-\frac{t}{2}} \,\d v \d t\\ &= \int_0^{+\infty} \e^{-\frac{t}{2}} \d t \int_0^t \frac{\sqrt{v(t - v)}}{t^2} \,\d v. \tag{1} \end{align*} For a fixed $t > 0$, make substitution $\displaystyle v = t \sin^2 θ \ \left( 0 < θ < \frac{π}{2} \right)$ to get\begin{align*} \int_0^t \frac{\sqrt{v(t - v)}}{t^2} \,\d v &= \int_0^{\frac{π}{2}} \frac{\sqrt{t \sin^2 θ(t - t \sin^2 θ)}}{t^2} \cdot 2t \sin θ \cos θ \,\d θ\\ &= 2 \int_0^{\frac{π}{2}} \sin^2 θ \cos^2 θ \,\d θ. \end{align*} Therefore\begin{align*} (1) &= 2 \int_0^{+\infty} \e^{-\frac{t}{2}} \d t \int_0^{\frac{π}{2}} \sin^2 θ \cos^2 θ \,\d θ\\ &= 2 \left( \int_0^{+\infty} \e^{-\frac{t}{2}} \d t \right) \left( \int_0^{\frac{π}{2}} \sin^2 θ \cos^2 θ \,\d θ \right). \end{align*}