Let $(x)=x^4$ be approximated by a polynomial of degree less or equal to 2, which interpolates $x^4$ at x = -1,0,1then the maximum absolute interpolation error over the interval[-1,1] is equal to?
2026-02-22 21:01:40.1771794100
Approximation of poly of degree 4 by degree 2
51 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in NUMERICAL-METHODS
- The Runge-Kutta method for a system of equations
- How to solve the exponential equation $e^{a+bx}+e^{c+dx}=1$?
- Is the calculated solution, if it exists, unique?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Minimum of the 2-norm
- Is method of exhaustion the same as numerical integration?
- Prove that Newton's Method is invariant under invertible linear transformations
- Initial Value Problem into Euler and Runge-Kutta scheme
- What are the possible ways to write an equation in $x=\phi(x)$ form for Iteration method?
- Numerical solution for a two dimensional third order nonlinear differential equation
Related Questions in ERROR-FUNCTION
- Integral of error-like function
- Approximation of poly of degree 4 by degree 2
- To find the new weights of an error function by minimizing it
- About L2 error distribution and its STRANGE oscillatory behaviour
- Remainder in Asymptotic Expansion of Erfc
- Intuitive meaning of attitude error function $\Psi$ defined over $SO(3)$. Is $\Psi$ a metric?
- What are the obtained consequences in mathematics if the antiderivative of $e^{-x²}$ and $e^{x²}$ expressed as elementary functions?
- The maximum area of a circle drawn between the graphs of $e^{-x²}$ and $-e^{-x²}$?
- Evaluation of $\int_{0}^\infty \frac{\sin(x)}{x}e^{- x²} dx$
- Closed form of $I(a)=\int_{0}^a {(e^{-x²})}^{\operatorname{erf}(x)}dx $ and is it behave similar with error function?
Related Questions in INTERPOLATION-THEORY
- Approximation of poly of degree 4 by degree 2
- Linear interpolation of over time of standard deviation measurements
- How can Newton's Divided Difference Interpolation accuracy be improved?
- Lagrange linear, quadratic, and cubic interpolations maximum interpolation error functions comparison
- Can I decompose the Lagrange interpolating polynomial of the sum of 2 functions into 2 separate Lagrange polynomials?
- What is the Lagrange Interpolation polynomial of $1/{(x-1)}$?
- Use 1-degree Chebyshev polynom to approximate $\cos(x)$ and calculate the error
- Is step-wise interpolation possible for a curve which cannot be represented by a function?
- How to prove $\|P|X|^\theta\|_{p/\theta} \le \|P|X|\|_p^{\theta}$
- Inequality of p-norm for Hardy-Littlewood maximum function
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
You have three points on $f(x)=x^4$. Find a quadratic $g(x)$ that passes throught these three points. Then you are looking for $\max |f(x)-g(x)|$. Compute it as a function of $x$, take the derivative, set to zero ...