Let $L$ be a semisimple Lie algebra and let $V(\lambda)$ be a finite dimensional irreducible $L$-module with the highest weight $\lambda$. How can we view the sum \begin{align*} \oplus_{n\in\mathbb{N}}V(n\lambda) \end{align*} as a graded algebra with $n$th homogeneous component $V(n\lambda)$? More precisely, if $\lambda$ and $\mu$ are dominant weights, how do we define multiplication on $V(\lambda)V(\mu)$ and why $V(\lambda)V(\mu) \subset V(\lambda + \mu)$?
2026-02-22 21:28:01.1771795681
Irreducible highest weight representations as a graded algebra
75 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REPRESENTATION-THEORY
- How does $\operatorname{Ind}^G_H$ behave with respect to $\bigoplus$?
- Minimal dimension needed for linearization of group action
- How do you prove that category of representations of $G_m$ is equivalent to the category of finite dimensional graded vector spaces?
- Assuming unitarity of arbitrary representations in proof of Schur's lemma
- Are representation isomorphisms of permutation representations necessarily permutation matrices?
- idempotent in quiver theory
- Help with a definition in Serre's Linear Representations of Finite Groups
- Are there special advantages in this representation of sl2?
- Properties of symmetric and alternating characters
- Representation theory of $S_3$
Related Questions in LIE-ALGEBRAS
- Holonomy bundle is a covering space
- Computing the logarithm of an exponentiated matrix?
- Need help with notation. Is this lower dot an operation?
- On uniparametric subgroups of a Lie group
- Are there special advantages in this representation of sl2?
- $SU(2)$ adjoint and fundamental transformations
- Radical of Der(L) where L is a Lie Algebra
- $SU(3)$ irreps decomposition in subgroup irreps
- Given a representation $\phi: L \rightarrow \mathfrak {gl}(V)$ $\phi(L)$ in End $V$ leaves invariant precisely the same subspaces as $L$.
- Tensors transformations under $so(4)$
Related Questions in GRADED-RINGS
- Extending a linear action to monomials of higher degree
- Direct sum and the inclusion property
- High-degree pieces of graded ideal with coprime generators
- Bihomogeneous Nullstellensatz
- The super group $GL(1|1)$
- Properties of the Zariski topology on Proj
- Localization of a graded ring at degree zero
- Adams operations and an artificial grading on K-theory
- On "homogeneous" height and "homogeneous" Krull-dimension?
- Units are homogeneous in $\mathbb Z$-graded domains
Related Questions in GRADED-ALGEBRAS
- Direct sum and the inclusion property
- Units are homogeneous in $\mathbb Z$-graded domains
- In a $\mathbb Z$-graded ring we have $IR \cap R_0 = I$
- Is every (left) graded-Noetherian graded ring (left) Noetherian?
- When a homogeneous ideal is written as a product of two ideals, then each of two ideals is homogeneous?
- Tensor product of graded algebras 3
- Trying to understand more about polynomials in noncommuting variables.
- Irreducible highest weight representations as a graded algebra
- The twisted tensor product $BA\otimes_{\tau} A$ as the non-unital Hochschild complex
- Graded $C^*$ algebra homomorphism
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If $v_{\lambda}\in V(\lambda)$ and $v_{\mu}\in V(\mu)$ are highest weight vectors, then $v_{\lambda}\otimes v_{\mu}$ is s highest weight vector in $V(\lambda)\otimes V(\mu)$ of weight $\lambda+\mu$, which spans the weight space for that weight. Hence this spans an irreducible representation isomorphic to $V(\lambda+\mu)$ and projecting along an invariant complement, one a unique (up to scale) homomorphism $V(\lambda)\otimes V(\mu)\to V(\lambda+\mu)$. If you realize each $V(n\lambda)$ as a subrepresentation of $S^nV(\lambda)$ in this way, the choice of a $v_\lambda\in V(\lambda)$ gives you a highest weight vector in each $V(n\lambda)$ and thus a scale for all the homomorphisms in question. (Viewed in this way, one is actually constructing a subalgebra of the symmetric algebra $S^*V(\lambda)$ of $V(\lambda)$.