My problem is to prove this equality:
$$a^{\log_b c} = c^{\log_b a}$$
My method:
$$\begin{cases} \log_b a=m\\ \log_b c=n\\ \end{cases} \Rightarrow \begin{cases} a=b^m\\ c=b^n\\ \end{cases} \Rightarrow \begin{cases} a^n=(b^m)^n\\ c^m=(b^n)^m\\ \end{cases} \Rightarrow a^n=c^m \Rightarrow a^{\log_b c} = c^{\log_b a} $$
Is this method correct or is there a more elegant solution?
Thank you!
Yes, it is correct. You can also consider $$ \log_b(a^{\log_bc})=\log_bc\cdot\log_ba = \log_ba\cdot\log_bc=\log_b(c^{\log_ba}) $$ Since the function $\log_b$ is invertible, you conclude $$ a^{\log_bc}=c^{\log_ba} $$