$A$ is a matrix with $0$ or $1$ element. $L$ is the lapace matrix of $A$. $S$ is a real vector, we define $\mathbb{sign}(S) = [\mathbb{sign}(s_1),...,\mathbb{sign}(s_n)]^T$. I find the following fact that $S^TL\mathbb{sign}(S)>0$ is always true through a large simulation. Is the fact necessary for the matrix metioned above and how can I prove it?
2026-02-22 21:51:43.1771797103
Is the following fact for laplace matrix true? And how to prove it?
107 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in CONTROL-THEORY
- MIT rule VS Lyapunov design - Adaptive Control
- Question on designing a state observer for discrete time system
- Do I really need quadratic programming to do a Model Predictive Controller?
- Understanding Definition of Switching Sequence
- understanding set of controllable state for switched system
- understanding solution of state equation
- Derive Anti Resonance Frequency from Transfer Function
- Laplace Transforms, show the relationship between the 2 expressions
- Laplace transform of a one-sided full-wave rectified...
- Controlled Markov process - proper notation and set up
Related Questions in ALGEBRAIC-GRAPH-THEORY
- Normalized Laplacian eigenvalues of a path graph
- Can i consider ($\emptyset, \infty, \emptyset$) to denote a null graph?
- number of edges in infinite graph
- 2-fold covers of graphs, their spectrum and the matching polynomial
- Is the following fact for laplace matrix true? And how to prove it?
- Automorphisms of cospectral k-regular graphs
- Understanding Generalised Quadrangles
- For any sets $X$ & $Y$ can the group of automorphisms for the digraph $G(X,Y)=(X\cup Y,X\times Y)$ be express in terms of symmetric groups?
- Proof that bipartite graph has perfect matching if and only if zero sub-matrix is not included
- Convergence of function with matrix as input
Related Questions in GRAPH-LAPLACIAN
- Sherman-Morrison formula for non-invertible bmatrices
- Is the Perturbed Laplacian Matrix positive Definite?
- Is the following fact for laplace matrix true? And how to prove it?
- Proving an inequality on commute times of two different weight functions
- What is the origin of negative eigenvalues for Laplacian matrix?
- Does the largest eigenvalue give the order of the largest connected component?
- Prove that grounded Laplacian/reduced conductance matrix is non-singular
- SVD with Laplacian regularization and $L_{1,2}$ group-norm
- Why eigenvalues of a symmetric matrix with zero row sum are not affected with this special manipulation?
- Determinant of Laplacian removing $2$ (or more) rows and columns
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Depending on convention, the sign of zero may be zero or one.
When $\operatorname{sign}(0)=1$, let $D=\operatorname{diag}(\operatorname{sign}(S))$. Then $S=Dv$ for some $v\ge0$ and $\operatorname{sign}(S)=D\mathbf1$. Hence $S^TL\operatorname{sign}(S)=v^TDLD\mathbf1$. Since $L$ is Laplacian and $D$ is a diagonal matrix whose diagonal entries are equal to $\pm1$, $L\le DLD$ entrywise. It follows that $0=L\mathbf1\le DLD\mathbf1$ and in turn, $0\le v^TDLD\mathbf1$.
When $\operatorname{sign}(0)=0$, we have $S^TL\operatorname{sign}(S)=u^TM\operatorname{sign}(u)$ where $u$ is the subvector containing all nonzero entries of $S$ and $M$ is the corresponding principal submatrix of $L$. Let $D=\operatorname{diag}(\operatorname{sign}(u))$. Then $u=Dv$ for some $v>0$ and $u^TM\operatorname{sign}(u)=v^TDMD\mathbf1$. Similar to the previous paragraph, we have $M\le DMD$ entrywise and hence $M\mathbf1\le DMD\mathbf1$. Note that, as $M$ is a principal submatrix of $L$ and all off-diagonal entries of $L$ are non-positive, every row sum in $M$ is $\ge$ the corresponding row sum in $L$, because there are potentially fewer negative entries. It follows from $0=L\mathbf1$ that $0\le M\mathbf1$. Therefore $0\le M\mathbf1\le DMD\mathbf1$ and in turn, $0\le v^TDLD\mathbf1$.