Is the operator $$Tf = f(x) - f(x) \int_0^1 f(y) dy$$ in $C[0,1]$ (with the uniform norm) a contraction and what is the possible fixed point?
2026-02-22 21:23:04.1771795384
Is the operator $Tf = f(x) - f(x) \int_0^1 f(y) dy$ a contraction?
103 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in FIXED-POINT-THEOREMS
- Newton's method with no real roots
- Determine $ \ a_{\max} \ $ and $ \ a_{\min} \ $ so that the above difference equation is well-defined.
- Banach and Caristi fixed point theorems
- Show that $\Phi$ is a contraction with a maximum norm.
- Using Fixed point iteration to find sum of a Serias
- Map a closed function $f: (1,4) \rightarrow (1,4)$ without fixed point
- Stop criterium for fixed point methods
- Approximate solutions to nonlinear differential equations using an integral sequence
- Inverse function theorem via degree theory
- Fixed point of a map $\mathbb R^n \rightarrow \mathbb R^n$
Related Questions in CONTRACTION-OPERATOR
- Is this mapping contractive?
- Proving an operator is surjective for Lumer-Phillips Theorem application.
- how to show that this non-linear operator is a contraction
- Contractive sequence together with not contract mapping
- Union of contractions is a contraction
- Is the operator $Tf = f(x) - f(x) \int_0^1 f(y) dy$ a contraction?
- Contraction mapping theorem
- Contraction mapping theorem to solve ODE
- Abstract index notation vs Ricci Calculus
- Continuous function from set to proper subset is a contraction
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Hint 1. Note that $Tf=f$ if and only if $f(x) \int_0^1 f(y) dy=0$ for all $x\in [0,1]$.
Hint 2. We have that $$|(Tf)(x)|= |f(x) - f(x) \int_0^1 f(y) dy|=|f(x)|\left|1-\int_0^1 f(y) dy\right|$$ so, for example, if $f=3$ and $g=0$ then $$\|(Tf)-(Tg)\|=\left|1-3\right|\|f-g\|=2\|f-g\|$$ where $\|\cdot\|$ is the uniform norm in $C[0,1]$.
Hint 3. Is $T$ a contraction in the closed ball $\{f\in C[0,1]: \|f\|\leq r \}$ for some $r>0$?