Whilst I understand the classification of the finitely generated abelian groups, this had me wondering whether there is a subgroup $H$ of a general (necessarily infinitely generated) abelian group $G$ such that $H$ is not isomorphic to any quotient $G/N$ of $G$.
2026-02-22 22:40:34.1771800034
Is there a good example of a subgroup of an infinitely generated abelian group that is not isomorphic to a quotient of that group?
781 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in GROUP-THEORY
- What is the intersection of the vertices of a face of a simplicial complex?
- Group with order $pq$ has subgroups of order $p$ and $q$
- How to construct a group whose "size" grows between polynomially and exponentially.
- Conjugacy class formula
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- A group of order 189 is not simple
- Minimal dimension needed for linearization of group action
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- subgroups that contain a normal subgroup is also normal
- Could anyone give an **example** that a problem that can be solved by creating a new group?
Related Questions in ABELIAN-GROUPS
- How to construct a group whose "size" grows between polynomially and exponentially.
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- Invariant factor decomposition of quotient group of two subgroups of $\mathbb{Z}^n$.
- Computing Pontryagin Duals
- Determine the rank and the elementary divisors of each of the following groups.
- existence of subgroups of finite abelian groups
- Theorem of structure for abelian groups
- In the category of abelian groups the coequalizer $\text{Coker}(f, 0)$, $f: A \to B$ is simply $B/f(A)$.
- Commutator subgroup and simple groups
- Are there any interesting examples of functions on Abelian groups that are not homomorphisms?
Related Questions in INFINITE-GROUPS
- Subgroup of index p in an infinite p-group?
- For general $n \in \Bbb N$ , how to determine all groups (both finite and infinite) having exactly $n$ conjugacy classes?
- Geometrical interpretation of a group
- Is there a good example of a subgroup of an infinitely generated abelian group that is not isomorphic to a quotient of that group?
- Orbits of $X$ under $N\triangleleft G$ are of equal length
- Infinite case: Let $N$ be a normal subgroup of index m in $G$. Prove that $a^{m}\in N$ for all $a\in G$
- Show that the infinite cyclic group is not isomorphic to a direct product of two nontrivial cyclic groups.
- If an infinite group acts freely on two sets then the sets are bijective via an action preserving bijection?
- If an infinite group $G$ acts freely on two sets of same cardinality $> |G|$, then the sets are bijective via an action preserving bijection?
- For an infinite group $G$, is the collection of all transitive $G$-sets first order elementary?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For a very simple example, let $G=\mathbb{Q}$ and $H=\mathbb{Z}$. Since $\mathbb{Q}$ is divisible (for any $x\in\mathbb{Q}$ and any nonzero integer $n$, there exists $y\in\mathbb{Q}$ such that $x=ny$), any quotient of $\mathbb{Q}$ is also divisible, so $\mathbb{Z}$ is not isomorphic to any quotient of $\mathbb{Q}$.