I have a functor $sGrph \to Quiv$ which replaces each edge in a given simple graph with a cospan (and leaves the vertices alone). This functor clearly preserves colimits. Is it a left adjoint?
2026-02-22 20:37:45.1771792665
Is this functor a left adjoint?
133 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
- bijection between graphs
Related Questions in CATEGORY-THEORY
- (From Awodey)$\sf C \cong D$ be equivalent categories then $\sf C$ has binary products if and only if $\sf D$ does.
- Continuous functor for a Grothendieck topology
- Showing that initial object is also terminal in preadditive category
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- What concept does a natural transformation between two functors between two monoids viewed as categories correspond to?
- Please explain Mac Lane notation on page 48
- How do you prove that category of representations of $G_m$ is equivalent to the category of finite dimensional graded vector spaces?
- Terminal object for Prin(X,G) (principal $G$-bundles)
- Show that a functor which preserves colimits has a right adjoint
- Show that a certain functor preserves colimits and finite limits by verifying it on the stalks of sheaves
Related Questions in QUIVER
- idempotent in quiver theory
- Significance of adjoint relationship with Ext instead of Hom
- Mistake in the proof of Theorem 2.24 of Quiver Representations by Ralf Schiffler?
- From a lower triangular matrix to its quiver representation
- Indecomposable representation of an acyclic quiver on 3 vertices
- Full projective resolutions for path algebras in GAP
- Can this puzzle be solved using the representation theory of quivers?
- Usage and Realization of a Quiver Representation.
- Problem with hom-spaces and their dimensions in GAP
- admissible ideal of affine rank 3 acyclic quiver $\tilde{A}_{12}$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Let's call your functor $F.$ Let $2$ denote the two-object one-arrow quiver that looks like $0\to 1.$ Then $|\mathrm{Hom_{Quiv}}(F(K_2),2)|=1,$ but $|\mathrm{Hom_{sGraph}}(K_2,G)|$ is even for any simple graph $G.$ So $F$ cannot be a left adjoint.
To use an adjoint functor theorem to construct a right adjoint you'd really want $\mathrm{sGraph}$ to be cocomplete, but it doesn't have a coequalizer for the two automorphisms of $K_2$ for example.