$$ f \in L^\infty (0,1) \\ Tf(x) = \int_0^x e^{y-x}f(y)dy, x\ge0 $$ I've shown that T is a bounded linear operator from $L^\infty(0,\infty)$ into itself. I've computed its norm (it should be $\|T\| = 1$). Now, I was wondering if it is injective and/or surjective. For injectivity , I have to show that $Tf = Tg \implies f=g \text{ in } L^\infty(0,1)$. This seems to be true $$ Tf(x) = Tg(x) \\ e^{-x}\int_0^x e^y f(y) dy = e^{-x}\int_0^xe^yg(y)dy \\ \int_0^x e^y f(y) dy = \int_0^xe^yg(y)dy $$ Differentiating both sides with respect to $x$ and using the Fundamental Theorem of Calculus: $$ e^x f(x) = e^x g(x) \; a.e.\\ f = g \; a.e. $$ Is this right? However, I do not know how to show surjectivity ( and I do not if it is surjective ) . If it is surjective, then: $$ \forall g \in L^\infty(0,\infty), \exists f \in L^\infty(0,\infty): Tf = g $$ Therefore, I have to solve the following for $f$: $$ e^{-x} \int_0^x e^y f(y) dy = g(x) $$ I try: $$ \int_0^x e^y f(y) dy = g(x)e^x \\ e^x f(x) = g'(x)e^x + g(x)e^x \\ f(x) = g(x) + g'(x) $$ The problem is that I'm writing $g'(x)$ without knowing if $g$ is differentiable (in general, it is not, I think). I do not know how to proceed. Can someone please help? Thank you.
2026-02-22 21:26:43.1771795603
Is this operator on $L^\infty$ injective / surjective?
583 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in MEASURE-THEORY
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Absolutely continuous functions are dense in $L^1$
- I can't undestand why $ \{x \in X : f(x) > g(x) \} = \bigcup_{r \in \mathbb{Q}}{\{x\in X : f(x) > r\}\cap\{x\in X:g(x) < r\}} $
- Trace $\sigma$-algebra of a product $\sigma$-algebra is product $\sigma$-algebra of the trace $\sigma$-algebras
- Meaning of a double integral
- Random variables coincide
- Convergence in measure preserves measurability
- Convergence in distribution of a discretized random variable and generated sigma-algebras
- A sequence of absolutely continuous functions whose derivatives converge to $0$ a.e
- $f\in L_{p_1}\cap L_{p_2}$ implies $f\in L_{p}$ for all $p\in (p_1,p_2)$
Related Questions in OPERATOR-THEORY
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Confusion about relationship between operator $K$-theory and topological $K$-theory
- Definition of matrix valued smooth function
- hyponormal operators
- a positive matrix of operators
- If $S=(S_1,S_2)$ hyponormal, why $S_1$ and $S_2$ are hyponormal?
- Closed kernel of a operator.
- Why is $\lambda\mapsto(\lambda\textbf{1}-T)^{-1}$ analytic on $\rho(T)$?
- Show that a sequence of operators converges strongly to $I$ but not by norm.
- Is the dot product a symmetric or anti-symmetric operator?
Related Questions in INTEGRAL-OPERATORS
- Calculation/Verification of an integral kernel for $\operatorname{e}^{t\Delta}(1-\Delta)^{-\frac{1}{4}}$
- Integral Operator bounded on $L^p$, or infinite-dimensional matrix operator bounded on $\ell^p$
- Are Covariance Operators based on square integrable stochastic Processes semi-positive definite?
- Is this operator on $L^\infty$ injective / surjective?
- Kernel decomposition of a finite rank integral opeartor
- Find point spectrum and spectrum of integral operator
- Operator norm of integral operator
- Point spectrum of an integral operator
- Eigenvalues and eigenfunctions of an integral operator
- An Orthogonality Problem of Eigenfunctions of homogeneous Fredholm equation
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For surjectivity, the image of $T$ consists of continuous functions, so $T$ cannot be surjective.
Your argument for injectivity cannot work as it is. The Fundamental Theorem of Calculus requires that the integrand is continuous (or good enough), which you don't have in this case. The result you need is Lebesgue's Differentiation Theorem.