Define a sequence of functions $f_n : [0,2] \to \Bbb R$ as:
$$f_n(x) = \frac {1-x} {1+x^n}$$
Is this sequence of functions uniformly convergent on $[0,2]$?
Define a sequence of functions $f_n : [0,2] \to \Bbb R$ as:
$$f_n(x) = \frac {1-x} {1+x^n}$$
Is this sequence of functions uniformly convergent on $[0,2]$?
Copyright © 2021 JogjaFile Inc.
Let $f_n(x)=\frac{1-x}{1+x^n}$ and $f(x)=\begin{cases}1-x&,0\le x\le 1\\\\0&,1\le x\le 2\end{cases}$
Clearly we have
$$\lim_{n\to \infty}f_n(x)=f(x)$$
Furthermore, we see that
$$|f_n(x)-f(x)|=\begin{cases}\frac{(1-x)x^n}{1+x^n}&,0\le x\le 1\\\\\frac{x-1}{1+x^n}&,1\le x\le 2\end{cases}$$
Next, we have the following estimates for $x\in [0,1]$
$$\begin{align} \frac{(1-x)x^n}{1+x^n}&\le (1-x)x^n\\\\ &\le \left(\frac{1}{n+1}\right)\left(\frac{n}{n+1}\right)^n\\\\ &<\frac{1}{n+1}\\\\ &<\frac{1}{n-1}\\\\ &<\epsilon \end{align}$$
whenever $n>1+\frac1\epsilon$.
Similarly, we have the following estimates for $x\in[1,2]$
$$\begin{align} \frac{x-1}{1+x^n}&\le (x-1)x^{-n}\\\\ &\le \left(\frac{1}{n-1}\right)\left(\frac{n-1}{n}\right)^n\\\\ &<\frac{1}{n-1}\\\\ &<\epsilon \end{align}$$
whenever $n>1+\frac1\epsilon$.
Putting it all together, we see that for all $\epsilon>0$
$$|f_n(x)-f(x)|<\epsilon$$
whenever $n>1+\frac1\epsilon$ for all $x\in [0,2]$.