I am stuck with the problem on showing that $\{n(n-1)\}$ diverges. I know it leads to the indeterminate form $\infty-\infty$. That is, $$\displaystyle\lim_{n\to\infty}n(n-1)=\displaystyle\lim_{n\to\infty}(n^2-n)=\infty-\infty$$. How do I proceed? Thanks.
2026-02-22 20:07:09.1771790829
The sequence $\{n(n-1)\}$
29 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
For $n> 2$, $n-1 > 1$
Hence we have $n(n-1) > n$
That is $$\lim_{n \to \infty} n(n-1) \ge \lim_{n \to \infty} n = \infty$$