If l∈L(v;w) is bijective, then l^-1∈L(w;v) too? I'm not sure if it's this way that's why I ask, I'd appreciate your help.Until now I have done this... ”=⇒” Suppose T is invertible. To show that T is injective, suppose that u, v ∈ V are such that T (u) = T (v). Apply the inverse $$T^−1$$ of T to obtain $$ T^−1 T u = T^−1$$ T v so that u = v. Hence T is injective. To show that T is surjective, we need to show that for every w ∈ W there is a v ∈ V such that T v = w. Take $$v = T^−1w ∈ V$$ . Then $$T(T^−1w) = w$$. Hence T is surjective. ”⇐=” Suppose that T is injective and surjective. We need to show that T is invertible. We define a map S ∈ L(W, V ) as follows. Since T is surjective, we know that for every w ∈ W there exists a v ∈ V such that T v = w. Moreover, since T is injective, this v is uniquely determined. Hence define Sw = v. We claim that S is the inverse of T. Note that for all w ∈ W we have T Sw = T v = w so that T S = IW . Similarly for all v ∈ V we have ST v = Sw = v so that ST = IV . It remains to show that S is a linear map. For all w1, w2 ∈ W we have T(Sw1 + Sw2) = T Sw1 + T Sw2 = w1 + w2, so that Sw1 + Sw2 is the unique vector v in V such that T v = w1 + w2 = w. Hence Sw1 + Sw2 = v = Sw = S(w1 + w2).
2026-02-22 21:18:21.1771795101
l^-1∈L(w;v) is bijective?
37 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in LINEAR-TRANSFORMATIONS
- Unbounded linear operator, projection from graph not open
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- A different way to define homomorphism.
- Linear algebra: what is the purpose of passive transformation matrix?
- Find matrix representation based on two vector transformations
- Is $A$ satisfying ${A^2} = - I$ similar to $\left[ {\begin{smallmatrix} 0&I \\ { - I}&0 \end{smallmatrix}} \right]$?
- Let $T:V\to W$ on finite dimensional vector spaces, is it possible to use the determinant to determine that $T$ is invertible.
- Basis-free proof of the fact that traceless linear maps are sums of commutators
- Assuming that A is the matrix of a linear operator F in S find the matrix B of F in R
- For what $k$ is $g_k\circ f_k$ invertible?
Related Questions in VECTOR-SPACE-ISOMORPHISM
- Showing that $ \text{Ind}_H^G W \cong \text{Ind}_K^G(\text{Ind}_H^K W)$
- if $T$ is isomorphism, how can I prove that $[T^{-1}]_B=[T]_B^{-1}$ for any base $B$ of $V$?
- Basis of vector spaces in perfect pairing
- Linear isomorphism of quotient spaces
- $V$ and $\mathcal{L}(\mathbf{F},V)$ are isomorphic
- Isomorphic Hilbert spaces iff they have the same dimension
- Vector space isomorphic to direct sum
- Trying to find the dimension of a vector space...
- $V^*$ is isomorphic to the direct product of copies of $F$ indexed by $A$
- l^-1∈L(w;v) is bijective?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?