I'm done (a) and (b)(i) but I'm stuck on (b)(ii). I thought that since the dominant contribution is coming in at t=0 that I could approximate the sin in the logarithm and use a Taylor expansion, but then my resulting f(t) is 0 at t=0 so I don't get any contribution at all. Really stuck on how to proceed here.
2026-02-22 17:18:02.1771780682
Bumbble Comm
On
Laplace's Method Asymptotic Expansion of an integral
414 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
0
Bumbble Comm
On
It's true that you can't immediately apply the formula from 1(a), but you can prove a similar result in the same way:
If $\phi(t)$ attains its maximum value on $[a,b]$ at $t=a$, $\varphi'(a) = 0$, $\varphi''(a) \neq 0$, $f(a) = 0$, and $f'(a) \neq 0$, then
$$ \int_a^b e^{x \phi(t)} f(t)\,dt \sim -\frac{f'(a)}{\phi''(a)x} e^{x \phi(a)} $$
as $x \to \infty$.
It's straightforward to generalize this further.
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in DEFINITE-INTEGRALS
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Closed form of integration
- Integral of ratio of polynomial
- An inequality involving $\int_0^{\frac{\pi}{2}}\sqrt{\sin x}\:dx $
- How is $\int_{-T_0/2}^{+T_0/2} \delta(t) \cos(n\omega_0 t)dt=1$ and $\int_{-T_0/2}^{+T_0/2} \delta(t) \sin(n\omega_0 t)=0$?
- Roots of the quadratic eqn
- Area between curves finding pressure
- Hint required : Why is the integral $\int_0^x \frac{\sin(t)}{1+t}\mathrm{d}t$ positive?
- A definite integral of a rational function: How can this be transformed from trivial to obvious by a change in viewpoint?
- Integrate exponential over shifted square root
Related Questions in ASYMPTOTICS
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- How to find the asymptotic behaviour of $(y'')^2=y'+y$ as $x$ tends to $\infty$?
- Correct way to prove Big O statement
- Proving big theta notation?
- Asymptotics for partial sum of product of binomial coefficients
- Little oh notation
- Recurrence Relation for Towers of Hanoi
- proving sigma = BigTheta (BigΘ)
- What's wrong with the boundary condition of this $1$st order ODE?
- Every linearly-ordered real-parametrized family of asymptotic classes is nowhere dense?
Related Questions in LAPLACE-METHOD
- Using Laplace transforms to solve a differential equation
- Inverse laplace transform for $ \frac{s^2+1}{s^2(s+1)}$
- Steepest Descent Approximation applied to Integral Form
- Applying Laplace Method for asymptotic approximations
- Proving an integral inequality where $x$ is complex.
- Using the Saddle point method (or Laplace method) for a multiple integral over a large number of variables
- Inverse Laplace transformation that is slightly different from known transformation.
- Laplace's Method Asymptotic Expansion of an integral
- Asymptotic Expansion of an Oscillatory Integral
- Laplace transform of piecewise function - making it to become heaviside unitstep function
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

Indeed the contribution comes from $t=0$. We have $\log{(1+\sin{t})} \sim \sin{t} \sim t $ as $t \to 0$, so by Laplace's Method, $$ \begin{align} I(x) &\sim \int_0^{\varepsilon} e^x e^{-xt^2/2} (1+xt^3)t \, dt \\ &\sim \frac{e^x}{x} \int_0^{x^{1/2}\varepsilon} u e^{-u^2/2} \, du \\ &\sim \frac{e^x}{x} \int_0^{\infty} u e^{-u^2/2} \, du = \frac{e^x}{x}. \end{align} $$ using $t=x^{-1/2}u$, so $dt = x^{-1/2} \, du$.