We're given the following dynamical system:
$$ \begin{aligned} \dot x &= -x + y + x (x^2 + y^2)\\ \dot y &= -y -2x + y (x^2 + y^2) \end{aligned} $$
What's the largest constant $r_0$ such that the circle $x^2 + y^2 < r_0^2$ lies in the origin's basin of attraction?
So far, with relatively easy algebra, I've got:
$$ \begin{aligned} \dot r &= \frac{r}{2}(-2-\sin(2 \phi)+2r^2) \\ \dot \phi &= -(1+\cos^2(\phi)) \end{aligned} $$
Which immediately shows $r_0 \geq \sqrt{\frac12}$. How to show that there is no better bound?

After solving the system
$$ \dot r = \frac{r}{2}(-2-\sin(2 \phi)+2r^2) \\ \dot \phi = -(1+\cos^2(\phi)) $$
we have
$$ \left\{ \begin{array}{rcl} r & = & \frac{\sqrt{3} \sqrt{3-\cos \left(2 \sqrt{2} \left(t-2 c_1\right)\right)}}{\sqrt{3 e^{2 t} c_2-\cos \left(2 \sqrt{2} \left(t-2 c_1\right)\right)+\sqrt{2} \sin \left(2 \sqrt{2} \left(t-2 c_1\right)\right)+9}} \\ \phi & = & -\tan ^{-1}\left(\sqrt{2} \tan \left(\sqrt{2} t-2 \sqrt{2} c_1\right)\right) \\ \end{array} \right. $$
Regarding the $r$ behavior the line of maxima after considering $c_1 = c_2 = 0$ is given by
$$ r_{max} = \frac{\sqrt{3} \sqrt{3-\cos \left(2 \sqrt{2} t\right)}}{\sqrt{\sqrt{2} \sin \left(2 \sqrt{2} t\right)-\cos \left(2 \sqrt{2} t\right)+9}} $$
with $\min r_{max} = \sqrt{1-\frac{1}{\sqrt{13}}}\approx 0.850088$