So I want to calculate the Laurent series of this function
$$ f: \mathbb{C} \to \mathbb{C}, \quad f(z) = \frac{1}{z^{2}+1}.$$
The Laurent series has to be in this form:
$$\sum_{n=- \infty }^{ \infty } a_{n} (z-i)^n$$
for a circular disc $$ 0<| z-i|<p,$$ where $p$ has to be found.
With partial fraction expansion I am getting $$ f(z) =\frac{i}{2}\left( \frac{1}{z+i} - \frac{1}{z-i}\right).$$
For the first summand, $$\frac{1}{z+i} = \frac{1}{2i} \frac{1}{1+\frac{z-i}{2i}} = \frac{1}{2i} \sum_{n= 0 }^{ \infty }\left(\frac{-(z-i)}{2i}\right)^n = \frac{1}{2i} \sum_{n= 0 }^{ \infty } \left(\frac{i}{2}\right)^n (z-i)^n $$ for $$\left|\frac{-(z-i)}{2i}\right| < 1 \Longrightarrow \left| z-i \right| < 2.$$ Now I don't know how to continue with $$\frac{1}{z-i} .$$
In my opinion it is easier without partial fraction decomposition: let $z=w+i$ then for $0<|w|<2$ $$f(z) = \frac{1}{z^{2}+1}=\frac{1}{w(w+2i)}=\frac{1}{2iw(1-iw/2)}=-\frac{i}{2w}\sum_{k=0}^{\infty}(iw/2)^k.$$ Hence the Laurent expansion of $f$ in $0<|z-i|<2$ is $$f(z)=-\frac{i}{2(z-i)}+\sum_{k=0}^{\infty}\frac{i^{k}(z-i)^{k}}{2^{k+2}}$$