Let be
$$p_k(x)=\frac{k!}{(2k)!}\frac{d^k}{dx^k}(x^2-1)^k,\quad k=0,\ldots,n\in\mathbb{N}$$
a Legendre polynomial. How can I prove that
$$p_k(1)=\frac{k!^2}{(2k)!}2^k\ ?$$
Let be
$$p_k(x)=\frac{k!}{(2k)!}\frac{d^k}{dx^k}(x^2-1)^k,\quad k=0,\ldots,n\in\mathbb{N}$$
a Legendre polynomial. How can I prove that
$$p_k(1)=\frac{k!^2}{(2k)!}2^k\ ?$$
let $u=x-1$ so that $x^2-1=u(u+2)$ $$p_k(u+1)=\frac{k!}{(2k)!}\frac{d^k}{du^k}(u^k(u+2)^k)$$
$\frac{d^k}{du^k}(u^k(u+2)^k)$ evaluated at $u=0$ is just $k!$ times the coefficient of $u^k$ in the binomial expansion of $u^k(u+2)^k$ which is $2^k$
so $$p_k(1)= \frac{k!}{(2k)!}\cdot k!\cdot 2^k $$