I wanted to find the value of: $$ \def\LegP{\operatorname{LegendreP}} \int_{-1}^{1} \LegP[n, x] \frac{d}{dx} (\LegP[n+1,x]) \, dx. $$
2025-01-13 02:25:56.1736735156
Integrating Legendre's Polynomials
95 Views Asked by 204 https://math.techqa.club/user/204/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Derivative of Lambert W function.
- how to use epsilion-delta limit definition to answer the following question?
- Finding the equation of a Normal line
- How to Integrate the Differential Equation for the Pendulum Problem
- Help in finding error in derivative quotient rule
- How to solve the following parabolic pde?
- Finding inflection point
- How to find the absolute maximum of $f(x) = (\sin 2\theta)^2 (1+\cos 2\theta)$ for $0 \le \theta \le \frac{\pi}2$?
- Utility Maximization with a transformed min function
- Interpreting function notation?
Related Questions in ORDINARY-DIFFERENTIAL-EQUATIONS
- General solution to a system of differential equations
- ODE existence of specific solutions
- How to Integrate the Differential Equation for the Pendulum Problem
- Question about phase portrait and invariant subspaces
- Help in Solving a linear Partial differential equation
- Elimination of quantifiers in the strucure of polynomials and in the structure of exponentials
- Verifying general solution to differential equation
- Integrating $ \frac{\mathrm{d}^{2}v}{\mathrm{d}y^{2}} = \frac{\mathrm{d}p}{\mathrm{d}x} $
- Solving differential equation and obtain expressions for unknowns?
- For what value of $k$ is $2e^{4x}-5e^{10x}$ a solution to $y''-ky'+40y=0$?
Related Questions in DEFINITE-INTEGRALS
- Revolving Asymmetric Function Around Y-Axis Where It is Bonded From -Ve Value to +Ve Value.
- One statement about definite integrals implying an another.
- How do you calculate $\int_0^{\pi/2}\tan(x)\ln(\sin(x))\,dx$?
- How to find $\lim_{x\to +\infty}{\left(\sqrt{\pi}x-\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+2}}{2n!(2n+1)(2n+2)}\right)}$?
- $\sum_{k=n}^{\infty}\left(n-k\right)e^{-\lambda}\frac{\lambda^{k}}{k!}= ?$
- $I=\int_{-1}^{2}\frac{xf(x^2)}{2+f(x+1)}dx$
- Definite integral on fractional part function .
- Estimates of $f(x) = \int_x^{x^2} \dfrac{dy}{\ln y}$
- $\sum_{j=3}^\infty \frac{1}{j(\log(j))^3}$ converges or diverges?
- Time integration - time "direction"
Related Questions in LEGENDRE-POLYNOMIALS
- Solving the Legendre Equation with Frobenius Method
- Find the minimum coefficients in an inner product on L2(-1,1) using Legendre polynomials as orthonormal vectors.
- Integrating Legendre's Polynomials
- Find the solution of $(1-x^2)y'' - 2xy' + 14y = 5x^3$
- The Legendre polynomial.
- Asymptotic expansion of Legendre polynomial
- Legendre functions of the second kind (references)
- Legendre polynomial for $p_k(1)$
- Prove any polynomial of degree n that is orthogonal to ${1, x, ..., x^{n-1}}$ is a constant multiple of a Legendre Polynomial.
- Calculate orthonormal basis using Gram-Schmidt
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
$\int_{-1}^1 P_n P_{n+1}^{'}dx = \int_{-1}^1 P_n ((2n+1)P_n + P_{n-1}^{'})dx = (2n+1)\int_{-1}^1 P_n^2dx + \int_{-1}^1 P_n P_{n-1}^{'}dx $ = 2
Here I used the following:
$$(2n+1)P_n = P_{n+1}^{'} - P_{n-1}^{'}$$ $$\int_{-1}^1 P_n^2dx = \frac{2}{2n+1}$$ (see Legendre Polynomials: proofs)
And the fact that $P_{n-1}^{'}$ is a polynomial of degree $n-2$ and thus can be expanded into a linear combination of $P_{n-2}$ to $P_0$, and $\int_{-1}^1 P_n P_m dx = 0$ if $m \ne n$