Let $R = \left\{\bigl((a, b), (c, d)\bigr) \in \mathbb{Z}^2 \times \mathbb{Z}^2; a + d = b + c\right\}$.
- Prove that $R$ is an equivalence relation.
- Find the equivalence class of the pair $(0, 0)$.
Let $R = \left\{\bigl((a, b), (c, d)\bigr) \in \mathbb{Z}^2 \times \mathbb{Z}^2; a + d = b + c\right\}$.
The relation $R$ is
The equivalence class of $(0,0)$ is the set $$ \left\{ (a,b)\in\mathbb{Z}^2 : a + 0 = b + 0 \right\} = \left\{ (a,a) : a\in\mathbb{Z}\right\}. $$
To show that something is an equivalence relation, we need to show 3 properties:
For reflexive: $$a+b=a+b\implies(a,b)R(a,b)$$
For symmetric: $$(a,b)R(c,d)\implies a+d=b+c\implies c+b=d+a\implies (c,d)R(a,b)$$
For transitive: $$(a,b)R(c,d),(c,d)R(e,f)\implies a+d=b+c,c+f=d+e\implies a+d+c+f=b+c+d+e\implies a+f=b+e\implies(a,b)R(e,f)$$
Notice that $(a,b)R(0,0)\implies a+0=b+0\implies a=b$. Hence the equivalence class is $\{(k,k)\mid k\in\mathbb Z\}$.