We are given the equations
$$\frac{\partial{u}}{\partial{t}}+u\frac{\partial{u}}{\partial{x}}+g\frac{\partial{h}}{\partial{x}}=0$$
and
$$\frac{\partial{h}}{\partial{t}}+\frac{\partial{(hu)}}{\partial{x}} = 0$$
We are then asked
By linearising these equations about a uniform mean flow of speed $u_{0}$ and uniform thickness $h_0$, derive expressions for the phase and group speeds of linear shallow water waves. Are these waves dispersive?
Having attempted $u=u_0 + u'$ and $h=h_0 + h'$ I arrived at
$$\frac{\partial{u'}}{\partial{t}}+u_0\frac{\partial{u'}}{\partial{x}}+g\frac{\partial{h'}}{\partial{x}}=0$$
and
$$\frac{\partial{h'}}{\partial{t}}+u_0\frac{\partial{h'}}{\partial{x}}+h_0\frac{\partial{u'}}{\partial{x}}=0$$
Which I don't see how they come out to be proper wave equations from which I can get the velocities.
Following a suggestion from Semiclassical on the chat and in comment. We can write the systems in the following form:
$$\begin{align*}\frac{\partial u^{\prime}}{\partial t} &= -u_{0}\frac{\partial u^{\prime}}{\partial x}-g\frac{\partial h^{\prime}}{\partial x} \\ \frac{\partial h^{\prime}}{\partial t}&= -u_{0}\frac{\partial h^{\prime}}{\partial x} - h_{0}\frac{\partial u^{\prime}}{\partial x}\end{align*}$$
This can be written in the following matrix form:
$$\begin{pmatrix}\frac{\partial u^{\prime}}{\partial t} \\ \frac{\partial h^{\prime}}{\partial t}\end{pmatrix} = -\begin{pmatrix}u_{0} & g \\ h_{0} & u_{0}\end{pmatrix}\begin{pmatrix}\frac{\partial u^{\prime}}{\partial x} \\ \frac{\partial h^{\prime}}{\partial x}\end{pmatrix}$$
We can diagonalise the matrix to give us:
$$\begin{pmatrix}\frac{\partial u^{\prime}}{\partial t} \\ \frac{\partial h^{\prime}}{\partial t}\end{pmatrix} = \begin{pmatrix}\sqrt{\frac{g}{h_{0}}} & -\sqrt{\frac{g}{h_{0}}} \\ 1 & 1\end{pmatrix}\begin{pmatrix}-\sqrt{gh_{0}}-u_{0} & 0 \\ 0 & \sqrt{gh_{0}}-u_{0}\end{pmatrix}\begin{pmatrix}\sqrt{\frac{g}{h_{0}}} & -\sqrt{\frac{g}{h_{0}}} \\ 1 & 1\end{pmatrix}^{-1}\begin{pmatrix}\frac{\partial u^{\prime}}{\partial x} \\ \frac{\partial h^{\prime}}{\partial x}\end{pmatrix}$$
Premultiplying by the inverse eigenvector matrix:
$$\begin{pmatrix}\sqrt{\frac{h_{0}}{g}} & 1 \\ -\sqrt{\frac{h_{0}}{g}} & 1\end{pmatrix}\begin{pmatrix}\frac{\partial u^{\prime}}{\partial t} \\ \frac{\partial h^{\prime}}{\partial t}\end{pmatrix} = \begin{pmatrix}-\sqrt{gh_{0}}-u_{0} & 0 \\ 0 & \sqrt{gh_{0}}-u_{0}\end{pmatrix}\begin{pmatrix}\sqrt{\frac{h_{0}}{g}} & 1 \\ -\sqrt{\frac{h_{0}}{g}} & 1\end{pmatrix}\begin{pmatrix}\frac{\partial u^{\prime}}{\partial x} \\ \frac{\partial h^{\prime}}{\partial x}\end{pmatrix}$$
This leads to two decoupled partial differential equations:
$$\begin{align}\frac{\partial}{\partial t}\left(\sqrt{\frac{h_{0}}{g}}u^{\prime} + h^{\prime}\right)&=-\left(\sqrt{gh_{0}}+u_{0}\right)\frac{\partial}{\partial x}\left(\sqrt{\frac{h_{0}}{g}}u^{\prime} + h^{\prime}\right) \\ \frac{\partial}{\partial t}\left(h^{\prime}-\sqrt{\frac{h_{0}}{g}}u^{\prime}\right) &= \left(\sqrt{gh_{0}}-u_{0}\right)\frac{\partial}{\partial x}\left(h^{\prime}-\sqrt{\frac{h_{0}}{g}}u^{\prime}\right)\end{align}$$
We now can assume the two ansätze expressions: $$\sqrt{\frac{h_{0}}{g}}u^{\prime} + h^{\prime} = Ae^{i(k_{1}x - \omega_{1} t)},\quad h^{\prime}-\sqrt{\frac{h_{0}}{g}}u^{\prime} = Be^{i(k_{2}x - \omega_{2} t)}$$
From this and our two derived equations we find:
$$-\omega_{1} = -(\sqrt{gh_{0}}+u_{0})k_{1} \implies \frac{\omega_{1}}{k_{1}} = \frac{\partial \omega_{1}}{\partial k_{1}} = \sqrt{gh_{0}}+u_{0}$$
And:
$$-\omega_{2} = (\sqrt{gh_{0}}-u_{0})k_{2} \implies \frac{\omega_{2}}{k_{2}} = \frac{\partial \omega_{2}}{\partial k_{2}} = u_{0} - \sqrt{gh_{0}}$$
I'm not sure if this is correct, as this talks about the velocity of propagation of the normal modes of vibration, so I would appreciate it if anyone has any comments as to the validity of this approach.