suppose your formula is true for $n$,
Then $$\sum^{n}_{i=1}{\frac{1}{\sqrt{i}}}>\sqrt{n}$$
we then try to prove the formula true for $n+1$$$\sum^{n}_{i=1}{\frac{1}{\sqrt{i}}}+\frac{1}{\sqrt{n+1}}>\sqrt{n}+\frac{1}{\sqrt{n+1}}$$$$=\frac{\sqrt{n}\sqrt{n+1}+1}{\sqrt{n+1}}>\frac{n+1}{\sqrt{n+1}}=\sqrt{n+1}$$
The base case is true so it's true for all n
0
Ben Grossmann
On
Hint: note that
$$
\frac 1{\sqrt n} \geq \sqrt n - \sqrt{n-1}
$$
suppose your formula is true for $n$, Then $$\sum^{n}_{i=1}{\frac{1}{\sqrt{i}}}>\sqrt{n}$$ we then try to prove the formula true for $n+1$ $$\sum^{n}_{i=1}{\frac{1}{\sqrt{i}}}+\frac{1}{\sqrt{n+1}}>\sqrt{n}+\frac{1}{\sqrt{n+1}}$$ $$=\frac{\sqrt{n}\sqrt{n+1}+1}{\sqrt{n+1}}>\frac{n+1}{\sqrt{n+1}}=\sqrt{n+1}$$
The base case is true so it's true for all n